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Abstract

Motivation: Genome-wide association studies (GWAS) have been widely used in discovering the

association between genotypes and phenotypes. Human genome data contain valuable but highly

sensitive information. Unprotected disclosure of such information might put individual’s privacy at

risk. It is important to protect human genome data. Exact logistic regression is a bias-reduction

method based on a penalized likelihood to discover rare variants that are associated with disease

susceptibility. We propose the HEALER framework to facilitate secure rare variants analysis with a

small sample size.

Results: We target at the algorithm design aiming at reducing the computational and storage costs

to learn a homomorphic exact logistic regression model (i.e. evaluate P-values of coefficients),

where the circuit depth is proportional to the logarithmic scale of data size. We evaluate the algo-

rithm performance using rare Kawasaki Disease datasets.

Availability and implementation: Download HEALER at http://research.ucsd-dbmi.org/HEALER/

Contact: shw070@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) (Visscher et al., 2012)

have largely focused on the common disease gene discovery, which

often involves large sample sizes. In GWAS, many common vari-

ations [e.g. Single-Nucleotide Polymorphisms (SNPs) with frequen-

cies >1%] have been studied to uncover the risk of complex genetic

disorders. One controversy in GWAS is whether multiple rare vari-

ations (with frequencies much <1%) may also result in certain risk.

These unknown associations might be very important, as they could

reveal the biologic cause of diseases and provide useful suggestions

for treatments (Cantor et al., 2010). For example, Hamosh et al.

(2005) show that rare variants (e.g. protein-modifying rare risk al-

leles) play a clear role in Mendelian disorders. There is increasing

interest in the rare variants studies (Rivas et al., 2011; Styrkarsdottir

et al., 2014) in GWAS. However, rare variations must have much

higher effects (e.g. odds ratios) than that of common SNPs in order

to be detected by ordinary GWAS methods (e.g. logistic regression)

(Stram, 2014). These variants may be too rare, such that there are

not enough participants with these rare alleles that could be identi-

fied in a study. When variants are very rare (i.e. lacking of enough

samples), ordinary tests [e.g. Wald-test (Hauck and Donner, 1977)

in GWAS fail to capture true significant alleles, as the asymptotic
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approximation assumption might be no longer valid. For example,

in a recent study (Haiman et al., 2013) with unbalanced case-control

population, (i.e. the number of case patients is about 10 times less

than that of the control population), the ordinary method identified

hundreds of significantly rare SNPs that is related to breast cancer.

However, a later study (Stram, 2014) shows that most of these sig-

nificant rare SNPs are false positive after applying exact logistic re-

gression (Mehta et al., 2000). The exact logistic regression is more

robust in computing P-values for rare variants analysis with limited

sample size (Mehta and Patel, 1995). The studies of rare variants

also raise significant privacy concerns of participants. Rare variants

can be highly unique to the specific population, which makes them

more vulnerable to re-identification attacks. As discussed in a previ-

ous study, Lin et al. (2004) show that an individual can be uniquely

identified by using as few as 75 independent SNPs. Recent studies

(Gymrek et al., 2013; Sweeney et al., 2013) demonstrated that even

anonymized genome data can leak signification personal informa-

tion (e.g. name) of the participants. Moreover, even aggregated gen-

ome information (e.g. test statistics) can be used to recover sensitive

personal information (Homer et al., 2008; Wang et al., 2009). As

genome data are vulnerable to various attacks (Humbert et al.,

2013; Malin and Sweeney, 2001, 2004), it is imperative to develop

protection methods to secure genome analysis.

A number of technical solutions (Ayday et al., 2013; Bos et al.,

2014; Cheon et al., 2015; Jiang et al., 2014; Kamm et al., 2013;

Lauter et al., 2014; Naveed et al., 2014; Wang et al., 2014; Xie

et al., 2014; Yu and Ji, 2014) have been proposed to protect genome

privacy in data analysis. Existing studies can be categorized into two

groups: (i) protecting the computation process (Cheon et al., 2015;

Humbert et al., 2013; Lauter et al., 2014) in genome data analysis,

and (ii) protecting the genome data before computation (Wang

et al., 2014; Zhao et al., 2015) or research outcomes after computa-

tion (Yu and Ji, 2014). In this work, we focus on the protection of

the computation process of rare variants analysis in GWAS. In par-

ticular, we consider the use of homomorphic encryption techniques

in designing secure protocols to learn an exact logistic regression

model from encrypted data, which allow researchers to securely out-

source the storage and computation of sensitive data (e.g. to com-

mercial cloud computing services like Microsoft Azure or Amazon

EC2). The development of homomorphic encryption-based methods

to support secure genome data computation has been studied in (Bos

et al., 2014; Cheon et al., 2015; Graepel et al., 2013; Lauter et al.,

2014; Naehrig et al., 2011), where certain computation can be dir-

ectly carried out over homomorphic-encrypted data. The resulting

encrypted outcomes, when decrypted, match the result of the same

operations performed on the plaintext. However, none of the afore-

mentioned studies has addressed the problem of rare variants ana-

lysis in GWAS. In addition, Verle et al. (2015) recently proposed to

tackle the secure rare-variants analysis using multi-party computa-

tion techniques. Their approach assumes multiple data owners and

active participation of the owners in data storage and computation,

which is completely different to our model as illustrated below.

Figure 1 illustrates the application scenario of the proposed

HEALER framework. Homomorphic encryption allows the en-

crypted rare disease variants to be stored and computed in a cloud

server without requiring the participation of data owners, e.g. re-

quest for decryption keys. By encrypting rare variants with public

key, data owners can directly upload them to the cloud service.

Thus, the genetic association of rare disease variants with a pheno-

type can be securely evaluated with homomorphic computation over

different cohorts. The final encrypted evaluation results are access-

ible to researchers, but it requires the private key for decryption

from the trusted party. Remarkably, there is no interaction between

the trusted party and the cloud service, which guarantees the confi-

dentiality of uploaded sensitive information. Therefore, the pro-

posed scheme enables secure outsourcing of the computation of rare

disease variants to commercial cloud services, by which individuals

could contribute to the rare disease analysis in GWAS in a secure

manner protected by the homomorphic encryption schemes.

To enable HEALER framework, we developed novel methods

including: (i) secure rejection sampling and (ii) secure and efficient

integer comparison to compute a homomorphic exact logistic

regression model, (iii) parallel computation over homomorphic-

encrypted data to accelerate the proposed algorithm, (iv) a compres-

sion scheme to reduce the storage cost of homomorphic-encrypted

data. We also compared the HEALER framework with other com-

peting alternatives and conducted performance analysis of the pro-

posed protocols in this article and the supplementary, including the

acceptance rate of rejection sampling, circuit depth, and number of

homomorphic operations. The rest of this article is organized as fol-

lows. In Section 2, we will introduce the exact logistic regression

method and presents the implementation of homomorphic computa-

tion of exact logistic regression. Section 3 reports experimental re-

sults and Section 4 provides the discussion of the article. Section 5

concludes this article.

2 Methods

In this section, we introduce the exact logistic regression model and

the proposed homomorphic encryption algorithm to secure the ana-

lysis, where a list of frequently used symbols can be found in the

Supplementary Materials.

2.1 Exact logistic regression
Let us denote by Y ¼ fY1;Y2; . . . YnjYi 2 f0; 1g; i ¼ 1; . . . ;ng a set

of independent binary random variables and y ¼ ðy1; y2; . . . ynÞT the

realization of Y with n records. For clarity, we use bold and regular

symbols to represent vector and scalar variables, respectively. In the

logistic regression model, the response probability pi for the ith re-

cord is formulated by

log
pi

1� pi

� �
¼ xTzi þ bTxi (1)

Fig. 1. Application scenario of the proposed HEALER framework. By encrypt-

ing rare disease variants with public key, data owners can securely upload

them to the cloud service, where the genetic association of rare variants with

a phenotype can be securely evaluated with homomorphic computation with-

out requiring the participation of data owners. Authorized researchers can ob-

tain final evaluation results by requiring result decryption from the trusted

party with the private key (Color version of this figure is available at

Bioinformatics online.)
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where x ¼ ðx1;x2; . . . ;xh1
ÞT and b ¼ ðb1; b2; . . . ;bh2

ÞT are h1 and

h2 dimensional model parameters with respect to the covariates zi

¼ ðzi1; zi2; . . . ; zih1Þ and xi ¼ ðxi1; xi2; . . . ; xih2Þ, respectively. The

likelihood function given the observations y, and parameters x and

b can be expressed as

LðY ¼ yjx; bÞ ¼
exp
�Xn

i¼1
yiðxTzi þ bTxiÞ

�
Yn

i¼1
ð1þ expðxTzi þ bTxiÞÞ

(2)

Here zi is a nuisance variable, which is correlated to the explana-

tory variable xi, but may not be of direct interest. We can eliminate

the model parameter x by conditioning on the sufficient statistics

tN ¼
Pn

i¼1 yizi. Let us denote tI ¼
Pn

i¼1 yixi as the sufficient statis-

tics of parameters of interest (i.e. b) and define t0 ¼
Pn

i¼1 yi. The

exact inference of b is based on the permutation distribution of its

sufficient statistics. The conditional likelihood function of TI given

TN¼ tN can be expressed as

LðTI ¼ tIjTN ¼ tNbÞ ¼ CðtI; tNÞexpðbT tIÞX
u
Cðu; tNÞexpðbT uÞ

(3)

where C(u, tN) is the number of vectors y� ¼ ðy�1; y�2; . . . y�nÞ
T, such

that
Pn

i¼1 y�i ¼ t0,
Pn

i¼1 y�i xi ¼ u and
Pn

i¼1 y�i zi ¼ tN. Note that y*

is just a permutation of y. We define two vectors are equal, if their

pair-wise elements are identical. Without loss of generality, we

would like to make inferences about a single parameter b with re-

spect to the explanatory variable xi. For the case of multiple param-

eter (i.e. b ¼ ðb1;b2; . . . bh2ÞT with h2>1), one can eliminate the rest

h2�1 parameter by conditioning on their sufficient statistics in

Equation (3). In this study, we limit our discussion of the problem

with considering a single parameter at a time. Suppose we are inter-

ested in the following hypothesis test with null hypothesis against its

two-sided alternative.

H0 : b ¼ 0 (4)

One can calculate the exact P-value by summing the following

conditional probability over a certain critical region R

Pvalue ¼
X

v2R
LðTI ¼ vjTN ¼ tN; b ¼ 0Þ ¼

X
v2R

Cðv; tNÞ
RuCðu; tNÞ

(5)

For example, the critical region can be defined as R ¼ fv :

LðTI ¼ vjTN ¼ tN ; b ¼ 0g�LðTI ¼ tI jTN ¼ tN ; b ¼ 0Þg. This re-

gion includes all possible values of the test statistic at which the

above conditional probability is equal or less than that at the

observed value of tI. Sampling methods (Mehta and Patel, 1995;

Mehta et al., 2000) are widely used to efficiently evaluate the P-

value, where a detailed discussion can be found in Section S1 in

Supplementary Materials.

2.2 Homomorphic encryption-based exact logistic

regression
2.2.1 Homomorphic encryption

Homomorphic encryption is a form of encryption technique, which

allows certain operations (e.g. addition and/or multiplication) to be

conducted directly over ciphertext. Existing homomorphic encryp-

tion techniques can be categorized as follows (Fontaine and Galand,

2007): (i) partially homomorphic cryptosystems (PHCs) that sup-

port a single type of operation (i.e. either addition or multiplication)

over ciphertext (Boneh and Shacham, 2002; Gjøsteen, 2006), (ii)

fully homomorphic cryptosystems (FHCs) that support arbitrary

number of addition and multiplication operations but less efficient

(Brakerski and Vaikuntanathan, 2011; Gentry and Halevi, 2011)

and (iii) somewhat homomorphic cryptosystems (SHCs) that is

specified by a limited number of accumulated operations (Brakerski

et al., 2012). PHCs like Paillier cryptosystems (Paillier, 1999):

E(x)¼ gxrm mod m2 (with modulus m and base g as the public key,

and a random number r 2 f1; . . . ;m� 1g to ensure the randomness

of ciphertext) are very efficient: Eðx1ÞEðx2Þ ¼ ðgx1 rm
1 Þðgx2 rm

2 Þ
mod m2 ¼ ðgx1þx2 ðr1r2ÞmÞmod m2 ¼ Eðx1 þ x2Þ. However, PHCs

have limitation, as they cannot combine both addition and multipli-

cation operations to securely solve complex problems. FHCs are

more powerful than PHCs, as they support both operations without

limitation. However, the complexity of FHCs is still formidable in

solving practical problem. SHCs, which support a specific number

of both accumulated operations, provide a better trade-off between

the flexibility and efficiency. In this article, we will leverage SHCs to

build basic functions to securely compute exact logistic regression.

For the sake of simplicity, the rest of this article will use homo-

morphic encryption to denote somewhat homomorphic encryption.

2.2.2 The proposed HEALER framework

Figure 2 illustrated the four key steps of the proposed HEALER

framework, which includes Step A: Data preparation and encryption

by data owners, Step B: Secure rejection sampling in public cloud,

Step C: Secure P-value computation in public cloud, and Step D:

Result dissemination to authorized researchers. In step A, data own-

ers can generate the encrypted dummy vector representations (see

Supplementary Section S4) of the input data using homomorphic

public key. Then, they can securely outsource both computation and

storage of homomorphic-encrypted data to the public cloud service,

where a compression scheme is proposed to reduce both storage and

communication costs of homomorphic-encrypted data. In step B,

the public cloud can securely generate samples by performing ran-

dom permutations over encrypted data. Then, the proposed secure

rejection sampling algorithm (see Supplementary Section S2) can be

applied to securely label valid samples. In step C, the public cloud

first securely computes the statistics based on the permuted samples

and the corresponding labels. Then, the cloud securely counts the

number of sample statistics that are greater than these from the ori-

ginally encrypted dummy vector representations (see Supplementary

Section S3). Finally, in step D, the authorized researcher can request

the decrypted result to obtain the P-value as defined in Equation

(S2) in Supplementary Materials. A detailed description of each step

and the corresponding mathematical formulas can be found in

Supplementary Sections S1–S6.

2.3 Parallel computation using multiple slots
In this section, we will discuss how to perform parallel computation

using encryption schemes to support single instruction multiple data

(SIMD) with LS slots. It is worth mentioning that packing multiple

ciphertexts into multiple slots have no impact on the size of en-

crypted data. We can utilize the multiple slots by packing (see

Supplementary Fig. S3): (i) pre-permuted vectors of the same obser-

vation y ¼ ðy1; y2; . . . ; ynÞTor (ii) covariates from different models.

In the scenario (i), we need to encrypt a few pre-permuted vectors

where is the lth permutation

instance of the vector y indicated by the permutation index

Sl ¼ ðSl
1; S

l
2 . . . ; Sl

nÞ with l¼1, 2, . . . ,LS. In this scenario, each slot

can generate different samples for the same model using SIMD in

parallel. Given multiple samples across multiple ciphertext slots, we

can apply the proposed HEALER framework over the same covari-

ate x̂l (e.g. the lth encrypted SNP) with different samples. Finally,

the user can aggregate multiple counts to learn the P-value. The use
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case of the scenario (i) is that the data owner possesses all the obser-

vations in y (as it requires pre-permutation in multiple slots during

the encryption phase) and would like to minimize the computational

time of analyzing a single model. In contrast, the scenario (ii) allows

cloud to learn multiple models in parallel. We can apply the

HEALER framework over multiple covariate x̂1; x̂2; . . . ; x̂LS with

the same sample , where x̂ l ¼ ðx̂ l
1; x̂

l
2; . . . ; x̂l

nÞ
T with l¼1, 2, . . . ,

L is the covariate in lth model (e.g. different independent SNPs).

Then, the aggregated counts in each slot can be used to evaluate the

P-values in different models (e.g. independent SNPs). The use case

of the scenario (ii) is that different data owners can securely contrib-

ute to the same rare disease study using the same public key (as the

pre-permutation is no longer required) and the cloud can maximize

the number of concurrent tasks for different model learning. It is quite

favorable for rare disease analysis in GWAS, as data in such studies

are usually from different sources and involve a large number of SNPs

for analysis. Besides SMID parallelization, our framework supports

multi-core and multi-node computation, as different computing nodes

can access and compute the same encrypted data in parallel.

2.4 Storage and communication optimization of

homomorphic-encrypted data through compression
Ciphertext in homomorphic encryption requires larger storage and

communication costs than these of plaintext. It is important to re-

duce the size of homomorphic-encrypted data through compression,

which would significantly improve the efficiency of the proposed

framework in practical scenarios. One evidence supporting the mo-

tivation is that the ciphertext mainly consists of 10 numeric symbols

(i.e. ‘0’–’9’), which implies that only four bits are required to repre-

sent each symbol. Therefore, the ciphertext size can be reduced by at

least 50% with substitution-based compression schemes e.g. gzip

(Deutsch, 1996) or 7zip (Pavlov, 2007).

In our framework, we adopt a Variable-order Markov Model

(VoMM) (Begleiter et al., 2004) based compression scheme to fur-

ther compress the homomorphic-encrypted data. Unlike the substi-

tution based schemes (e.g. gzip or 7zip), VoMM-based methods

establish mappings between the emergence frequency of the

combination of finite numbers and probabilistic models. As a result,

it can provide a more effective compression using the arithmetic

coding. In our framework, we employed the PPMd scheme (Barr

and Asanović, 2006) version-j1 to achieve a better compression.

3 Results

3.1 Experimental setups
Our HEALER framework was implemented in the HElib (https://

github.com/shaih/HElib) and evaluated in the iDASH cloud (Ohno-

Machado et al., 2012) at UCSD, where three virtual machines

(VMs), each equipped with 96 GB memory and 8 cores, were used.

Real rare Kawasaki Disease (KD) Coronary Artery Aneurysm

(CAA) datasets with 15 and 30 records were obtained from three

different institutions (i.e. UCSD, University of Emory, and Genome

Institute of Singapore). Both datasets include one categorical nuis-

ance variable [i.e. Percent C-reactive Protein (PCRP) expression

level] with m¼3 categorical groups. Moreover, we selected 180 and

372 SNPs to fit slot size LS in ciphertexts to maximize the computa-

tional throughput for both datasets based on the parameters shown

in Supplementary Table S5. It is worth mentioning that the

HEALER framework does not limit the number of supported SNPs.

Readers can find more details of datasets and computing environ-

ment descriptions in Supplementary Section S8. The goal of this

study is to evaluate the feasibility of using homomorphic computa-

tion of exact logistic regression to securely identify SNPs susceptible

for KD CAA adjusted for different PCRP groups. The time and stor-

age costs of key generation for both datasets are described in

Supplementary Table S5.

3.2 Experimental results
We evaluated the number of valid samples required to obtain the

stable number of SNPs with P-value<0.05 among 10 000 SNPs

over plaintext (non-encrypted data) in Figure 3(a). We can see the

number of SNPs with P-value<0.05 varying with the number of

valid samples, where the number decreases rapidly when the number

of valid samples is over 80, and tends to be stable for 400 valid

Fig. 2. The workflow of the proposed HEALER framework involving four key steps: Step A: Data preparation and encryption by data owners, Step B: Secure rejec-

tion sampling in public cloud, Step C: Secure-value computation in public cloud, and Step D: Result dissemination to authorized researchers (Color version of this

figure is available at Bioinformatics online.)
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samples or more. For secure rejection sampling, Figure 3(b) depicts

the average time cost for securely generating one valid sample over

the encrypted KD dataset with 15 records, where we used up to 24

cores (8 cores�3 VMs) in parallel. The time cost is measured by

computing 180 SNPs in parallel based on the scenario (ii) in Section

2.3, where a total of 1440 number of samples were drawn for each

SNPs with an acceptance rate of 17.397%. We can find that the

time cost using 24 (8�3) cores is about one-fifth of the one using 4

cores, which demonstrates the scalability of the HEALER frame-

work in the secure cloud computing. The remaining reported experi-

mental results were all based on 24 cores (8 cores�3 VMs).

Table 1 shows the time cost and sampling performance obtained

by packing pre-permuted vectors of the same observation ŷ with

multiple slots (see scenarios (i) in Section 2.3) for both KD datasets.

Here, data encryption and decryption are one-time costs, which

took up to 20 s as shown in Table 1. Remarkably, the time cost of

P-value calculation for a single SNP was significantly reduced by

parallel computation. The algorithm can securely evaluate the

P-value of a single SNP within 3 min based on a total of 2262 num-

ber of valid samples for the larger KD dataset. Table 1 shows that

the acceptance rates of 19.127 and 6.2687% were achieved for two

KD datasets, respectively.

In Table 2, we simultaneously computed 180 and 372 SNPs for

both KD datasets, respectively (see scenarios (ii) in Section 2.3).

Ciphertext slots were used to pack covariates from multiple models.

Our algorithm generated 1677 and 1864 valid samples for the small

and large KD datasets, respectively. Table 2 shows that the total

time cost for P-value calculation is proportional to the number of

SNPs and the number of records. However, comparing Tables 1 and

2, we can find that the average time cost for each SNP is mainly

related to the number of records. Because the exact logistic regres-

sion is targeted to handle rare disease variants analysis, which typic-

ally involves a small number of records, the average time cost can be

controlled in an acceptable level. In addition, the performance can

be further improved by allocating more computational resources

(e.g. in the case of could computing).

Finally, we validate the p-values calculated based on ciphertext

(blue line with diamond marker) with those learned from plaintext (red

line with asterisk marker) as shown in Figure 4, which includes P-values

of 372 SNPs for the KD dataset with 30 records. We sorted the results

learned from plaintext in ascending order, and ordered P-values learned

from ciphertext accordingly. Figure 4 shows that the two curves are

mostly matched, which validates the results obtained with the proposed

HEALER framework. The differences in Figure 4 are due to the

randomness in sampling algorithm. Table 3 lists the SNP IDs and P-val-

ues of the top five SNPs identified in the HEALER framework.

4 Discussions

4.1 Performance analysis
We first analyze the acceptance rate of the proposed protocol. Let us

denote nj the number of records with covariate zi¼ j and n1
j the num-

ber of records with yj¼1 in the jth group with j¼1, . . . , m for a total

of m categories. As samples are drawn by the

random permutation of the vector ŷ with a total of n records, the ac-

ceptance rate can be expressed as

paccept ¼
Ym
j¼1

nj

n1
j

� �

n
Rm

j¼1n1
j

� � (6)

Equation (6) shows that on average there will be a valid sample

by drawing 1/paccept samples. In other words, the algorithm can ac-

cept paccept�r number of valid samples for drawing r samples.
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Fig. 4. Sorted P-values for all the 372 SNPs, where the blue line with diamond

marker and red line with asterisk marker are computed over ciphertext and

the corresponding plaintext based on 1864 valid samples, where we found 13

SNPs with P-value< 0.05 (Color version of this figure is available at

Bioinformatics online.)
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Fig. 3. (a) Number of SNPs with P-value<0.05 versus number of valid sam-

ples over 10 000 SNPs, where the number of SNPs become stable when there

are more than 400 valid samples. (b) Average time cost to securely generate

a valid sample versus different number of cores using the KD dataset with 15

records. The time cost is for the computation of 180 SNPs in parallel based on

the scenario (ii) in Section 2.3, where a total of 1440 samples were drawn for

each SNPs with an acceptance rate of 17.397% (Color version of this figure is

available at Bioinformatics online.)

Table 1. The performance to securely compute p-value for a single

SNP based on scenarios (i) in Section 2.3 for both KD datasets

No. of

records

Encryption

time

Decryption

time

P-value

calculation

No. of

valid

samples

Acceptance

rate

15 8.24 s 1.034 s 54.817 s 1928 19.127%

30 19.49 s 1.33 s 175.35 s 2262 6.2687%

Table 2. The performance to securely compute P-value for multiple

SNPs (180 and 372) based on scenarios (ii) in Section 2.3 for both

KD datasets

No. of

records

Encryption

time

Decryption

time

Average

computing

time per SNP

No. of

valid

samples

Acceptance

rate

15 7.53 s 7.947 s 46.489 s 1677 17.47%

30 17.04 s 25.356 s 171.25 s 1864 5.18%
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Moreover, we conducted the complexity analysis of secure rejec-

tion sampling (Algorithm 1 in Supplementary Materials) and secure

P-value computation (Algorithm 2 in Supplementary Materials) in

terms of circuit depth, number of homomorphic multiplications

(HMs), and homomorphic additions (HAs). The detailed step-by-

step analysis is provided in Supplementary Materials. For Algorithm

1, Supplementary Table S3 shows that the circuit depth is

log(2n(m�1)). Given r samples, Algorithm 2 requires a circuit

depth of log(4n(m�1)), which is shown in Supplementary Table S4.

Finally, the number of HAs and HMs could be reduced by a factor

of LS using LS-slot in SIMD parallel computation or further reduced

by a factor cLS when using c number of computing cores.

4.2 Comparison with other homomorphic encryption

applications to protect computation process
In Table 4, we first discuss the storage cost among our proposed

HEALER framework and three other homomorphic encryption-

based applications (Bos et al., 2014; Cheon et al., 2015; Lauter

et al., 2014) in terms of the size of a single encrypted value (SSEV)

and the number of accumulated homomorphic multiplication

(NAHM), where NAHM reflects the depth of a circuit and SSEV

represents the average size of each encrypted integer. In addition, we

can encrypted a total of LS integers into one ciphertext with LS slots,

without increasing the ciphertext size. For example, we use 372 slots

to store the KD dataset with 30 records, which yields an average

cost of 4.68 KB to store a single encrypted integer without compres-

sion. Table 4 shows that the proposed method requires a much

smaller ciphertext than that of the other schemes. When compared

with the homomorphic edit distance application (Cheon et al.,

2015), which represents an integer as a binary vector (BV), the pro-

posed method can directly handle secure integer comparison. For ex-

ample, at least four ciphertexts are required to represent an integer

ranging from 0 to 15 in a BV representation. Thus, BV-based

method usually results in a larger ciphertext. The SSEV and

NAHMs for the applications of expectation maximization (with dif-

ferent number of iterations) and model evaluation (using logistic re-

gression and cox regression) under various length of ciphertext

modulus (in the parentheses) are also listed in Table 4, where our

method shows the least cost of ciphertext size. Unlike HEALER,

which is designed to securely learn an exact logistic regression model

over a data set, the applications of model evaluation only take a pre-

learned model parameter and a single record as inputs and evaluate

the prediction result.

To further demonstrate the advantage of the proposed HEALER

framework, we discuss the storage costs between HEALER and

Binary HEALER in Table 5. Unlike HEALER using secure integer

comparison, Binary HEALER is based on the idea of using BVs to

represent integers (Cheon et al., 2015). Table 5 shows that Binary

HEALER always requires larger circuit depths (i.e. larger levels L0 in

modulus chain) due to the accumulated HMs required in the BV-

based integer addition. BV representation of integers also results in

both larger plaintext and ciphertext sizes, as each binary component

in the vector needs to be encrypted as a ciphertext. The number of

integers in ciphertexts that is required to compute the same dataset

in both methods are also listed in Table 5, where HEALER requires

much less redundant information (i.e. less number of integers). It is

worth mentioning that the ciphertext can be further compressed to

reduce the storage cost, as discussed in Section 2.4. Table 5 shows

that the ciphertext size can be reduced by >55%, when the PPMd

scheme (Barr and Asanović, 2006) was employed.

4.3 Comparison with perturbation-based protection

methods
We compare HEALER with perturbation-based methods [i.e.

Differential Privacy (DP)] for genome information protection. DP

(Dwork, 2008) has emerged as one of the strongest privacy guaran-

tees for sensitive data release. DP ensures that the risk incurred by

changing any single individual’s information in a particular database

is bounded by a quantifiable probability, where a higher protection

can be achieved by choosing a smaller privacy budget e. In practice,

DP protections can be applied either to the original genome data

(e.g. SNPs) before computation (Wang et al., 2014) or to the re-

search outcomes (e.g. P-value or test statistics) obtained after com-

putation (Yu and Ji, 2014). To compare with the methods of

applying DP before computation (DPBC) and DP after computation

(DPAC), we select a KD dataset with 30 records and 744 SNPs.

On the basis of the DPBC method by Wang et al. (2014), we

grouped 744 SNPs into 18 blocks and set the number of specializa-

tion as 5. Then, we apply exact logistic regression over the DPBC

protected data (short for the anonymized data that are generated by

the DPBC method). We selected the P-value cutoff as 0.05 to evalu-

ate how many significant SNPs can be correctly preserved in the

DPBC protected data (in terms of Recall and Precision) under differ-

ent privacy budgets (i.e. e¼1 and 0.5). The number of significant

SNPs based on the raw data under the P-value cutoff is also pro-

vided in Table 6. Table 6 shows that the recalls of DPBC method are

Table 3. The top five SNPs with the smallest P-values in all 372

SNPs

SNP ID rs332822 rs332818 rs11121354 rs2977272 rs2764900

P-value 0.000536 0.0032 0.0038 0.0070 0.0123

Table 5. Comparison of storage costs between HEALER and Binary

HEALER

Methods No. of

records

p L0 Ciphertext

size

Compressed

ciphertext

size

Plaintext

size

No. of

integers

HEALER 15 31 10 1.18MB 0.53MB 1.41KB 180

30 11 1.59MB 0.71MB 2.91KB 372

Binary

HEALER

15 2 13 9.97MB 4.43MB 15.75KB 504

30 16 14.95MB 6.67MB 26.64KB 682

Where p is plaintext base and L0 is levels in modulus chain.

Table 4. Comparison among HEALER and other homomorphic en-

cryption applications in terms of the SSEV and the number of accu-

mulated NAHM

Application scenarios SSEV NAHM

Exact logistic regression

(HEALER)

4.38 KB 8

Edit distance (Cheon

et al., 2015)

17.95 KB 13

Expectation maximization

(Lauter et al., 2014)

2 iterations (192 bits) 96 KB 5

3 iterations (384 bits) 384 KB 8

Model evaluation

(Bos et al., 2014)

Logistic regression

(128 bits)

64 KB 1

Cox regression

(512 bits)

1.0 MB 3

216 S.Wang et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
supplementary.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
in the supplementary 
.
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
 etal., 2014; Bos
Compared
binary vector 
Table 4: Comparison among HEALER and other homomorphic encryption applications in terms of the size of a single encrypted value (SSEV) and the number of accumulated homomorphic multiplication (NAHM)    
.,
homomorphic multiplications
are
.,
more than 
Table 5:
of storage costs between HEALER and Binary HEALER, where  is plaintext base and  is levels in modulus chainComparison 
(
.,
))
.
.,
., -
    Based on
in (
., 
-
., 
e
-


<0.05 for all setups, which means that <5% of the originally signifi-

cant SNPs with P-value<0.05 can be preserved.

Based on the idea of DPAC in (Yu and Ji, 2014), we also derived

the corresponding DP algorithm for exact logistic regression in

Supplementary Section S9. The results in terms of recall and preci-

sion in DPAC are better than those of DPBC in Table 6. Table 6

implies that it is hard to preserve significant SNPs after applying ei-

ther DPBC or DPAC methods when record number is small. In con-

trast, the proposed HEALER framework can provide accurate

results as well as protect the computation. A more detailed compari-

son among HEALER, DPBC and DPAC can be found in the

Supplementary Section S11.

4.4 Comparison with secure multiparty computing
Homomorphic encryption methods are highly generalizable and

promising for secure outsourcing to meet individual data custodians’

need in terms of privacy and utility (Check Hayden, 2015). But

homomorphic encryption methods are also computation and storage

intensive. In contrast, secure multiparty computing protocols are

customized for certain data analysis tasks and allow multiple parties

to collaborate. In these cases, participating parties jointly compute a

function over their inputs, and keep these inputs private. Each party

can perform certain computation locally over the controlled-access

(private) data, and only exchange intermediary results to synthesize

a global model. However, these protocols often require synchroniza-

tion and involve a large amount of peer-to-peer communication. In

contrast, homomorphic-encrypted data allow flexible on-demand

analysis requests in an untrusted cloud environment. Given the

homomorphic-encrypted data, authorized users are able to repeat

existing analysis or conduct new analysis by outsourcing both stor-

age and computation in the cloud.

4.5 Limitation
There are several limitations to the HEALER framework in the cur-

rent designs. First, the HEALER framework is based on the rejection

sampling scheme, where the acceptance rate would be low if a suit-

able proposal distribution is not available in the encrypted domain

(Bishop, 2006). Second, the computational and storage costs over

homomorphic-encrypted data are still very significant, which is sev-

eral order of magnitudes higher than these over plaintext. Although, a

compression scheme is employed to reduce the storage cost of homo-

morphic-encrypted data, further investigation is still needed to im-

prove the storage efficiency. Third, as it is still challenging to

efficiently handle homomorphic division operations (Naehrig et al.,

2011), HEALER framework requires users to perform one division

operation between two integers [see Equation (S2) in Supplementary

Materials]. Finally, HEALER framework only considered the P-value

evaluation. The estimation of the parameter b and the predictive

inference of a response at xi could be also possible (Mehta and Patel,

1995). However, they were not studied in our current implementa-

tion. There is still room to improve our algorithm by redesigning the

sampling method to increase acceptance rate or making better use of

the HELib and cloud computing parallel capacity. Besides obtaining

P-values, we also plan to investigate parameter estimation and pre-

dictive inference on encrypted data in our future work.

4.6 Potential extension to whole genome sequencing

and whole exome sequencing
Whole genome sequencing (WGS) and whole exome sequencing

(WES) have been widely used to identify rare disease-associated vari-

ants (Cirulli and Goldstein, 2010; Lohmueller et al., 2013).

However, many sources of false positive detections (O’Rawe et al.,

2013) have been identified in discovering rare disease-associated

variants in both WGS and WES. Recent study shows that a logistic

regression-based filtering method (Hwang et al., 2014) can be

applied to variant call files to reduce false positive detection. We

speculate that homomorphic encryption techniques with proper opti-

mizations (e.g. advanced algorithm designs with reduced circuit depth,

acceleration with parallel computation, compression on encrypted

data, etc.) could be applied to build a secure logistic regression-based

filtering method to protect WGS or WES data. These warrant our fu-

ture studies in homomorphic encryption-based methods.

5 Conclusion

This article presented a novel HEALER framework for estimating

the P-value of exact logistic regression parameters over

homomorphic-encrypted data. Our algorithm supports secure out-

sourcing and mitigates the risk of analyzing sensitive data in an

untrusted cloud environment (e.g. Amazon EC2 or Microsoft

Azure). We proposed a new rejection sampling approach, secure in-

teger comparison methods and parallelizable mechanisms to acceler-

ate the execution of these algorithms, which make the computation

of homomorphic encrypted exact logistic regression practical. We

also employed a compression scheme to reduce the storage and com-

munication cost of homomorphic-encrypted data. We demonstrated

the computational feasibility of our proposed framework, which

takes about 3 min to compute over 30 records in parallel.
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Barr,K.C. and Asanović,K. (2006) Energy-aware lossless data compression.

ACM Trans. Comput. Syst., 24, 250–291.

Table 6. Comparison among HEALER, DPBC and DPAC methods in

term of Recall and Precision in preserving significant SNPs with

P-value cutoff 0.05, and privacy budget e¼ 1 and 0.5

Methods Recall Precision No. of significant

SNPs

HEALER 1 1 1 1 70

DPBC e¼ 1 e¼ 0.5 e¼ 1 e¼ 0.5

0.0428 0.0286 0.1034 0.0556

DPAC e¼ 1 e¼ 0.5 e¼ 1 e¼ 0.5

0.0714 0.0571 0.2174 0.1481

Homomorphic computation of ExAct Logistic rEgRession 217

less than 
less than 
-
 less than 
Table 6: Comparison among HEALER, DPBC and DPAC methods in term of Recall and Precision in preserving significant SNPs with -value cutoff 0.05, and privacy budget  and 0.5   
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
 in supplementary.
e
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
 in supplementary
 (SMC)
 and others
(
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv563/-/DC1
-
But
-
WGS
WES
Lohmueller etal., 2013; 
.,
paper
-
.,
,
 minutes
. 


Begleiter,R. et al. (2004) On prediction using variable order Markov models.

J. Artif. Intell. Res., 22, 385–421.

Bishop,C.M. (2006) Pattern Recognition and Machine Learning Springer.

Springer, New York.

Boneh,D. and Shacham,H. (2002) Fast variants of RSA. CryptoBytes, 5, 1–9.

Bos,J.W. et al. (2014) Private predictive analysis on encrypted medical data. J.

Biomed. Inform., 50, 234–243.

Brakerski,Z. et al. (2012) (Leveled) fully homomorphic encryption without

bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference on - ITCS ‘12. ACM Press, New York,

pp. 309–325.

Brakerski,Z. and Vaikuntanathan,V. (2011) Efficient fully homomorphic en-

cryption from (standard) LWE. SIAM J. Comput., 43, 831–871.

Cantor,R.M. et al. (2010) Prioritizing GWAS results: a review of statistical

methods and recommendations for their application. Am. J. Hum. Genet.,

86, 6–22.

Check Hayden,E. (2015) Cloud cover protects gene data. Nature, 519,

400–401.

Cheon,J.H. et al. (2015) Homomorphic Computation of Edit Distance. In:

WAHC’15 - 3rd Workshop on Encrypted Computing and Applied

Homomorphic Cryptography, Puerto Rico.

Cirulli,E.T. and Goldstein,D.B. (2010) Uncovering the roles of rare variants in

common disease through whole-genome sequencing. Nat. Rev. Genet., 11,

415–425.

Deutsch,L.P. (1996) GZIP file format specification version 4.3. http://tools.

ietf.org/html/rfc1952. (12 September 2015, date last accessed).

Dwork,C. (2008) Differential privacy: a survey of results. In: Theory and

Applications of Models of Computation. Springer, Berlin pp. 1–19.

Fontaine,C. and Galand,F. (2007) A survey of homomorphic encryption for

nonspecialists. EURASIP J. Inf. Secur., 2007, 1–15.

Gentry,C. and Halevi,S. (2011) Implementing gentry’s fully-homomorphic en-

cryption scheme. In: Patterson, K.E. (ed.) Advances in Cryptology–

EUROCRYPT. Springer, Heidelberg, pp. 129–148.

Gjøsteen,K. (2006) A new security proof for Damgard’s ElGamal. In: Topics

in Cryptology – CT-RSA., vol. 3860, pp. 150–158.

Graepel,T. et al. (2013) ML confidential: machine learning on encrypted data.

In: Information Security and Cryptology–ICISC 2012. Springer,

Heidelberg, pp. 1–21.

Gymrek,M. et al. (2013) Identifying personal genomes by surname inference.

Science, 339, 321–324.

Haiman,C.A. et al. (2013) Genome-wide testing of putative functional exonic

variants in relationship with breast and prostate cancer risk in a multiethnic

population. PLoS Genet., 9, e1003419.

Hamosh,A. et al. (2005) Online Mendelian Inheritance in Man (OMIM), a

knowledgebase of human genes and genetic disorders. Nucleic Acids Res.,

33, D514–D517.

Hauck, W.W., Jr and Donner,A. (1977) Wald’s test as applied to hypotheses

in logit analysis. J. Am. Stat. Assoc., 72, 851–853.

Homer,N. et al. (2008) Resolving individuals contributing trace amounts of

DNA to highly complex mixtures using high-density SNP genotyping micro-

arrays. PLoS Genet., 4, e1000167.

Humbert,M. et al. (2013) Addressing the concerns of the lacks family:

Quantification of kin genomic privacy. In: Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security. ACM Press,

New York, pp. 1141–1152.

Hwang,K.-B. et al. (2014) Reducing false-positive incidental findings with en-

semble genotyping and logistic regression based variant filtering methods.

Hum. Mutat., 35, 936–944.

Jiang,X. et al. (2014) A community assessment of privacy preserving tech-

niques on human genome data. BMC, 14(Suppl 1), S1.

Kamm,L. et al. (2013) A new way to protect privacy in large-scale genome-

wide association studies. Bioinformatics, 29, 886–93.

Lauter,K. et al. (2014) Private computation on encrypted genomic data. In:

14th Privacy Enhancing Technologies Symposium, Workshop on Genome

Privacy (GenoPri’14). Amsterdam, The Netherlands.

Lin,Z. et al. (2004) Genomic research and human subject privacy. Science,

305, 183.

Lohmueller,K.E. et al. (2013) Whole-exome sequencing of 2 000 Danish indi-

viduals and the role of rare coding variants in type 2 diabetes. Am. J. Hum.

Genet., 93, 1072–1086.

Malin,B. and Sweeney,L. (2004) How (not) to protect genomic data privacy in

a distributed network: using trail re-identification to evaluate and design

anonymity protection systems. J. Biomed. Inform., 37, 179–192.

Malin,B.A. and Sweeney,L.A. (2001) Inferring genotype from clinical pheno-

type through a knowledge based algorithm. In: Proceedings of the Pacific

Symposium on Biocomputing, pp. 41–52.

Mehta,C.R. et al. (2000) Efficient Monte Carlo Methods for Conditional

Logistic Regression. J. Am. Stat. Assoc., 95, 99–108.

Mehta,C.R. and Patel,N.R. (1995) Exact logistic regression: Theory and ex-

amples. Stat. Med., 14, 2143–2160.

Naehrig,M. et al. (2011) Can homomorphic encryption be practical? In:

Proceedings of the 3rd ACM workshop on Cloud computing security work-

shop - CCSW ‘11. ACM Press, New York, NY, USA, p. 113.

Naveed,M. et al. (2014) Privacy and Security in the Genomic Era. arXiv,

1405.1891v, 1–47.

O’Rawe,J. et al. (2013) Low concordance of multiple variant-calling pipe-

lines: practical implications for exome and genome sequencing. Genome

med, 5, 28.

Ohno-Machado,L. et al. (2012) iDASH. Integrating data for analysis, ano-

nymization, and sharing. J. Am. Med. Informatics Assoc., 19, 196–201.

Paillier,P. (1999) Public-key cryptosystems based on composite degree resi-

duosity classes. In: Advances in Cryptology—EUROCRYPT’99, LNCS

1592, Springer Verlagpp. 223–238.

Pavlov,I. (2007) 7zip file archive application. https://ford.ischool.utexas.edu/

handle/2081/8999 (12 September 2015, date last accessed).

Rivas,M.A. et al. (2011) Deep resequencing of GWAS loci identifies independ-

ent rare variants associated with inflammatory bowel disease. Nat. Genet.,

43, 1066–1073.

Stram,D.O. (2014) Design, Analysis, and Interpretation of Genome-Wide

Association Scans. Springer, New York.

Styrkarsdottir,U. et al. (2014) Severe osteoarthritis of the hand associates with

common variants within the ALDH1A2 gene and with rare variants at

1p31. Nat. Genet., 46, 498–502.

Sweeney,L. et al. (2013) Identifying participants in the personal genome pro-

ject by name (A Re-identification experiment). White Paper 1021–1. Data

Privacy Lab, Harvard University, Cambridge, MA.

Verle,D. Du et al. (2015) Privacy-preserving statistical analysis by exact logis-

tic regression. In: 2nd International Workshop on Genome Privacy and

Security (GenoPri’15). San Jose, CA.

Visscher,P.M. et al. (2012) Five years of GWAS discovery. Am. J. Hum.

Genet., 90, 7–24.

Wang,R. et al. (2009) Learning your identity and disease from research papers.

In: Proceedings of the 16th ACM conference on Computer and communica-

tions security - CCS ‘09. ACM Press, New York, NY, USA, pp. 534–544.

Wang,S. et al. (2014) Differentially private genome data dissemination

through top-down specialization. BMC Med. Inform. Decis. Mak., 14, S2.

Xie,W. et al. (2014) SecureMA: protecting participant privacy in genetic asso-

ciation meta-analysis. Bioinformatics, 30, 3334–3341.

Yu,F. and Ji,Z. (2014) Scalable privacy-preserving data sharing methodology

for genome-wide association studies: an application to iDASH healthcare

privacy protection challenge. BMC Med. Inform. Decis. Mak., 14, S3.

Zhao,Y. et al. (2015) Choosing blindly but wisely: differentially private solici-

tation of DNA datasets for disease marker discovery. J. Am. Med. Inform.

Assoc., 22, 100–108.

218 S.Wang et al.

http://tools.ietf.org/html/rfc1952
http://tools.ietf.org/html/rfc1952
https://ford.ischool.utexas.edu/handle/2081/8999
https://ford.ischool.utexas.edu/handle/2081/8999

	btv563-TF1

