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Optimized Search-and-Compute Circuits and Their
Application to Query Evaluation on Encrypted Data

Jung Hee Cheon, Miran Kim, and Myungsun Kim

Abstract— Private query processing on encrypted databases
allows users to obtain data from encrypted databases in such a
way that the users’ sensitive data will be protected from exposure.
Given an encrypted database, users typically submit queries
similar to the following examples: 1) How many employees in an
organization make over U.S. $100 000? 2) What is the average
age of factory workers suffering from leukemia? Answering
the questions requires one to search and then compute over
the relevant encrypted data sets in sequence. In this paper,
we are interested in efficiently processing queries that require
both operations to be performed on fully encrypted databases.
One immediate solution is to use several special-purpose encryp-
tion schemes simultaneously; however, this approach is associated
with a high computational cost for maintaining multiple encryp-
tion contexts. Another solution is to use a privacy homomorphic
scheme. However, no secure solutions have been developed that
satisfy the efficiency requirements. In this paper, we construct a
unified framework to efficiently and privately process queries
with search and compute operations. For this purpose, the
first part of our work involves devising several underlying
circuits as primitives for queries on encrypted data. Second,
we apply two optimization techniques to improve the efficiency
of these circuit primitives. One technique involves exploiting
single-instruction-multiple-data (SIMD) techniques to accelerate
the basic circuit operations. Unlike general SIMD approaches,
our SIMD implementation can be applied even to a single
basic operation. The other technique is to use a large integer
ring (e.g., Z2t) as a message space rather than a binary field.
Even for an integer of k bits with k > t , addition can be
performed using degree 1 circuits with lazy carry operations.
Finally, we present various experiments performed by varying the
considered parameters, such as the query type and the number of
tuples.

Index Terms— Encrypted databases, private query processing,
homomorphic encryption.

I. INTRODUCTION

PRIVACY homomorphism is an important concept for
encrypting clear data while allowing one to perform
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operations on encrypted data without decryption. This concept
was first introduced by Rivest et al. [1] and, much later,
affirmed by Feigenbaum and Merritt’s question [2]: Is there an
encryption function E(·) such that both E(x + y) and E(x · y)
can be easily computed from E(x) and E(y)? Since that time,
very little progress was made in determining whether such
efficient and secure encryption schemes exist until 2009, when
Gentry constructed such an encryption scheme [3].

Although the use of Gentry’s scheme and other fully homo-
morphic encryption (HE) schemes (e.g., [4]–[6]) theoretically
allows for the secure evaluation of any function, the evaluation
cost is still far from being practical for many functions. Among
the various important functions, we restrict our interest to a
set of functions for databases, giving rise to the following
question: Given a set of fully encrypted databases, can we
construct a set of efficient functions to process queries over
those encrypted databases? If so, is the computational cost of
these functions acceptable?

This question is the starting point of this work. To facilitate
a better understanding of our approach, we would like to
describe the motivation for our work from a different per-
spective. At present, the simplest way to search for records
that satisfy a particular condition over encrypted databases
is likely via searchable encryption (e.g., [7]–[10]). However,
privately processing sum and avg aggregation queries under
the same conditions is performed using homomorphic encryp-
tion (e.g., [11]–[13]). Thus, the private processing of a query
that includes both matching conditions and aggregate opera-
tions requires the use of two distinct encryption techniques
in parallel, i.e., searchable encryption and homomorphic
encryption.

Recently, Ada Popa et al. proposed CryptDB [14] and
its extension [15], which can process general types of data-
base queries using layers of different encryption schemes:
deterministic encryption for equality condition queries, order-
preserving encryption (OPE) for range queries, and HE for
aggregate queries. The disadvantage of their work is that
in the long run, its privacy degrades to the lowest level of
data privacy provided by the weakest encryption scheme. This
observation leads to a natural question: Can we construct a
solution to efficiently perform such a database query without
maintaining multiple contexts of encryption? At first glance,
HE schemes appear to perfectly satisfy the requirement of
processing queries on encrypted databases within a single
encryption context. However, no solutions exist for expressing
and processing various queries on fully encrypted databases in
an efficient manner.

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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A. Our Results

Our main results can be summarized as follows:

• A general framework for private query evaluation:
We provide a common platform to allow database users
to work on a single underlying cryptosystem, to represent
their queries as functions in a conceptually simple man-
ner, and to efficiently perform these functions on fully
encrypted databases.

• Optimization of circuits and their applications to
compact expressions of queries: The foundation of our
simple framework is a set of optimized circuits for the
following operations: equality, greater-than comparison
and integer addition. We call these operations circuit
primitives. Our optimizations of circuit primitives are
developed such that they minimize the circuit depth
and the number of homomorphic operations. For this
purpose, we make extensive use of single-instruction-
multiple-data (SIMD) techniques to move data across
plaintext slots. In general, SIMD technology allows basic
operations to be performed on several data elements in
parallel. In contrast, our proposal operates on packed
ciphertexts of several data elements and thus enables the
efficiency of the basic operations of the circuit primitives
to be improved. Furthermore, we find that all circuit
primitives have O(log µ) depth for µ-bit data.

We then express more complicated queries using a
combination of the optimized circuit primitives. The
resulting query functions are conceptually simpler than
other representations of database queries and are compact
in the sense that retrieval queries require at most O(log µ)
depth.

• Further enhancement of the performance of query
evaluation: HE schemes typically use Z2 as a message
space, meaning that their encryption algorithm encrypts
each bit of a message. Although our circuit primitives
function efficiently on bit encryptions, we can achieve
further improvements by adopting a large integer ring
(e.g., Z2t ), particularly in the case of computing on
encrypted numerical data. Even for an integer of k bits
with k > t , addition can be performed using degree 1
circuits by processing lazy carry operations. Although
this rectification requires modification of our circuit prim-
itives, we can preserve their optimality through SIMD
operations. In other words, search-and-compute queries
can be processed using only O(log µ)-depth circuits.

• Experimental support: We perform comprehensive
experiments to evaluate the performance of various
queries expressed using our techniques from both a
theoretical and a practical perspective.

Compared with the preliminary version [16] of this paper,
this journal version now includes the following new results.

1) Additional circuit compositions to support more query
functionalities. Consequently, we can show how to han-
dle an SQL query with multiple conditions, such as
equality or/and greater-than conditions.

2) Improvements in the experimental studies achieved
through the use of carefully selected parameters. We first

Fig. 1. Our PSnC Framework.

investigate how the length of the plaintext modulus
affects the variation in depth resulting from homomor-
phic evaluations. We then demonstrate how to devise our
circuit primitives based on this observation.

3) Performance results from various perspectives. The
weakest element of our conference paper was the lack
of heuristic evidence to support the usefulness of our
techniques. In this work, we present various types of
experiments on different sets of possible DB queries
by not only combining fine-tuned circuits but also by
varying the parameters, such as the number of plaintext
slots and the bit length of the plaintext space.

B. Informal Description of Our Strategy

Assuming a database consisting of N blocks, i.e.,
R1 ∥ R2 ∥ · · · ∥ RN , to encrypt the record Ri , a DB
user prepares a pair of public/private keys (pk, sk) for an
HE scheme and publishes the public key to a DB server. The
users store their encrypted records R̄i = Epk(Ri ) for 1≤ i≤N
in the same manner as for normal write queries (e.g., using
the insert− into statement). Suppose that a user wishes
to submit a retrieval query Q to the DB server. Prior to being
submitted, the query Q must be properly pre-processed such
that all clear messages, such as constant values, are encrypted
under the public key pk. We denote this transformed query
by Q̄.

Upon receiving Q̄, the DB server compiles it into Q̄∗ by
applying our techniques. The reader can consider a dedicated
module for performing this task.1 Hereafter, we call this mod-
ule a Private Search-and-Compute (PSnC) processor. Next,
the DB server homomorphically evaluates Q̄∗ over the fully
encrypted databases and returns the resulting ciphertexts to the
user. The DB user can decrypt the output using his private key
sk while receiving no additional data except for the records
that satisfy the where conditions.

Figure 1 graphically illustrates the high-level architecture of
our approach.

Organization: The remainder of this paper is structured
as follows. In Section II, we briefly review the BGV-type

1Alternatively, one may imagine that Q̄∗ is transformed directly by the DB
user and then sent to the DB server. However, considering optimization and
performance, we believe that the superior choice is for the module to be part
of the DBMS.
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homomorphic encryption scheme. In Section III, we construct
the optimized circuits for expressing queries. Then, in
Section IV, we demonstrate how to construct database queries
consisting of search and/or compute operations using our cir-
cuit primitives. Section V presents our optimization techniques
for further improvements in performance, and Section VI
presents various experimental evaluations of our constructions.
In Section VIII, we conclude with the relative coordinates
of our solution in the literature, whose survey is given in
Section VII, as well as several directions for future work.

II. PRELIMINARIES

In this section, we focus on describing the efficient variant
of the Brakerski-Gentry-Vaikuntanathan (BGV)-type some-
what homomorphic encryption (SWHE) scheme [6], [17] that
serves as our underlying encryption scheme. We begin with a
formal definition of the cryptographic assumption used in the
BGV cryptosystem. In the following, we provide a description
of the security model assumed in our constructions.

A. Ring-LWE (RLWE) Assumption

The ring learning with errors (RLWE) problem was first
introduced by Lyubashevsky, Peikert and Regev [18]. RLWE
has attracted attention because it can be stated without directly
referring to lattices and also because the shortest vector
problem over ideal lattices can be reduced to it. Thus, the
RLWE assumption allows for several efficient SHWE schemes
(e.g., [5], [6]). The RLWE assumption is defined as follows.

Definition 1 (RLWE): For a security parameter κ , let
"m(X) be the m-th cyclotomic polynomial for an integer
m = m(κ). Let A = Z[X]/⟨"m(X)⟩ and Aq := A/qA for
an integer q = q(κ) ≥ 2. Let χ = χ(κ) be a distribution over
A. The RLWEm,q,χ problem is to distinguish two samples from
polynomially many samples as follows: In the first distribution,
one samples (ai , bi ) uniformly from (Aq)2. In the second
distribution, one first uniformly chooses s from Aq and then
outputs (ai , bi ) ∈ (Aq)2 by sampling ai ∈ Rq uniformly,
sampling ei ∈ χ according to the distribution, and setting
bi = ai · s + ei . The RLWEm,q,χ assumption states that the
RLWEm,q,χ problem is unfeasible.

Further details about the worst-case relation to ideal lattices
are provided in [18] [Theorem 4.1 in §4].

B. The BGV-Type SWHE Scheme

For a security parameter κ , we choose an m ∈ Z that defines
the m-th cyclotomic polynomial "m(X). For a polynomial ring
A = Z[X]/⟨"m(X)⟩, we set the message space to At :=
A/tA for some fixed t ≥ 2 and set the ciphertext space to
Aq := A/qA for an integer q . We choose a chain of moduli
q0 < q1 < · · · < qL = q whereby the SWHE scheme can
evaluate a depth-L arithmetic circuit. The RLWE-based SWHE
scheme is described below:

• (a, b; s)← Kg(1κ, h, σ, qL ): The algorithm Kg chooses
a weight-h secret key s and generates an RLWE instance
(a, b) relative to that secret key. We set the secret key to
sk = s and the public key to pk = (a, b).

• c ← Epk(x): To encrypt a message x ∈ At , the
algorithm chooses a small polynomial v and two Gaussian
polynomials e0 and e1 (with variance σ 2). It outputs the
ciphertext c = (c0, c1) by computing

(c0, c1) = (x, 0) + (bv + te0, av + te1) mod qL .

• x ← Dsk(c): Given a ciphertext c = (c0, c1) at level l,
the algorithm outputs x = [c0 − s · c1]ql mod t .

• c f ← Evek( f ; c, c′): If the function f is an addition
over ciphertexts, then the algorithm outputs the cipher-
text obtained through simple component-wise addition
of the two ciphertexts. If f is a multiplication over
ciphertexts, then it outputs that obtained through a tensor
product.

Note that our description only provides a high-level
overview of the BGV cryptosystem because we intentionally
omitted many details of the encryption scheme. We therefore
refer the reader to [6].

C. SIMD Technique

In general, FHE (and SWHE) schemes encrypt small plain-
texts (e.g., Z2) into large ciphertexts (e.g., Zq with q ≫ 2).
Thus, provided that a ciphertext is able to contain a number of
independent plaintexts, we can use the available memory space
far more efficiently. Smart and Vercauteren [19] first noted
that choosing appropriate parameters in certain FHE schemes
enables those FHE schemes to support SIMD operations on
finite fields of characteristic two. Their key observation was
that the plaintext space A2 can be regarded as a vector
of plaintext slots by the polynomial Chinese remainder the-
orem (CRT). Thus, addition and multiplication in A2 are
performed in the same manner as the component-wise addition
and multiplication of a vector of slots. In particular, because
there is no need for the values in the slots to be only bits,
we can use them to represent elements in Zt . We recommend
that the reader review the original reference [20] for further
details.

D. Treat Model

We will consider the following threat model. First, we
assume that an SQL server is semi-honest. Thus, it should
follow all specifications of our scheme. However, an adversary
is allowed to access all databases maintained by a corrupted
SQL server. Moreover, a corrupted DBA may become such an
attacker. It is fairly plausible for an attacker to legally log into
the SQL server, make an illegal copy of interesting data, and
hand it over to any malicious buyer. Therefore, the DB server
should learn nothing about a query beyond what is explicitly
revealed (e.g., the number of tuples).

Second, we assume that a DB user is also semi-honest but
is not allowed to collude with an SQL server. Some corrupted
DB users may create illegal copies of sensitive data; however,
the volume of illegally copied data leaked at any given time
is assumed to be negligible. The DB user should not be given
access to data that are not part of the query result.

To formulate our security model, we follow Boneh et al.’s
security definition [21]. Specifically, a dishonest DB server
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Fig. 2. An Illustration of SIMD Execution for the equal Circuit.

should not be able to distinguish between Q̄0 and Q̄1, where
the two transformed queries Q̄0 and Q̄1 have the same
syntactical form. Moreover, an adversarial DB user should
not be able to distinguish between two encrypted DBs, ,DB0
and ,DB1, for every fixed query Q and for all pairs of
DBs (DB0, DB1) such that Q( ,DB0) = Q( ,DB1).

III. CIRCUIT PRIMITIVES

We devise three primitives: an equality circuit, a comparison
circuit and an integer addition circuit. The first two circuits will
be used to express the where clauses in SQL statements,
and the last circuit will be used for the select clauses.
We focus on a method for optimizing these circuits with
respect to their depth and required homomorphic operations.
For this purpose, we use SIMD along with automorphism
operations.

Notation: When input messages are decomposed and
encrypted in a bitwise manner, the encryption x̄ of a mes-
sage x = xµ−1 · · · x1x0 means {x̄0, x̄1, . . . , x̄µ−1}, where
xi ∈ {0, 1}. We use “+” to denote homomorphic addition
and A to denote the number of additions. Similarly, for
homomorphic multiplication, we use “·” and M.

A. Equality Circuit

For two µ-bit integers x and y, we define an arithmetic
circuit for the equality test as follows:

equal(x̄, ȳ) = ∏µ−1
i=0 (1 + x̄i + ȳi ). (1)

The output of equal(·, ·) is 1̄ in the case of equality and
0̄ otherwise. In the bit-sliced implementation, we assume that
one ciphertext is used per bit; therefore, we have a total
of 2µ ciphertexts to evaluate the equality test. If, rather
than performing regular multiplication, we multiply each term
after forming a binary-tree structure, the depth of the equal
circuit becomes log µ. Specifically, the algorithm requires two
homomorphic additions to compute 1 + x̄i + ȳi and requires
that µ ciphertexts be multiplied by each other while consuming
log µ depth.

TABLE I

COMPLEXITY OF CIRCUIT PRIMITIVES

1) Our Optimizations: Our optimizations are focused on
minimizing the number of homomorphic operations per-
formed, particularly homomorphic multiplications. As shown
by Smart and Vercauteren [19], we can pack each bit xi into
a single ciphertext. Next, we expand the right-hand side of
Equation (1) and rearrange each term for convenience in SIMD
execution. Then, we repeatedly apply SIMD operations to a
vector of SIMD words. This procedure is the key to reducing
the number of homomorphic multiplications from µ − 1 to
log µ. We provide a better description of the complexity
in Table I.

For example, we consider the equal circuit for µ = 4.
We can pack each bit xi and yi into a corresponding sin-
gle ciphertext. The application of the SIMD operations on
this circuit is described in Fig. 2, where we denote the
XOR and AND gate by ⊕ and ∧. The left side represents
the execution over plaintext slots and the right side represents
the execution over the corresponding ciphertexts. We denote
by z̄(i) the vector obtained by applying rotation by i to each
element in z̄. Namely, we implement a single automorphism
X /→ X gi

for some element g ∈ Z∗m of order µ in the original
group Z∗m and the quotient group Z∗m/⟨2⟩. In Fig. 2, a rotation
operation X /→ X g is applied to the encryption x̄ + ȳ + 1
for some element g ∈ Z∗m of order µ = 4. Following the
first SIMD homomorphic multiplication, we can obtain the
encryption, which is entirely in the form of multiplications of
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two (xi + yi + 1)s. In general, the parallel SIMD computation
allows the equality circuit to be evaluated using an SWHE of
depth log µ in log µ homomorphic multiplications.

B. Greater-Than Comparison Circuit

For two unsigned µ-bit integers, the circuit comp(x̄, ȳ)
outputs 0̄ if x ≥ y and 1̄ otherwise. This operation can be
recursively defined as follows:

comp(x̄, ȳ) = c̄µ−1, (2)

where c̄i = (1 + x̄i ) · ȳi + (1 + x̄i + ȳi ) · c̄i−1 for i ≥ 1 with
an initial value c̄0 = (1 + x̄0) · ȳ0.

1) Our Optimizations: As the first step of optimization, we
express Equation (2) in the following closed form:

c̄µ−1 = (1 + x̄µ−1) · ȳµ−1

+ ∑µ−2
i=0 (1 + x̄i ) · ȳi · di+1di+2 · · · dµ−1,

where d j = (1 + x̄ j + ȳ j ). Because it has degree µ + 1, we
can deduce that the depth of the circuit is log(µ + 1). Then,
it is easy to see that a naïve construction of the circuit incurs
O(µ2) homomorphic multiplications.

The key observation is that the closed form is expressed as
a sum of products of (1 + x̄i ) · ȳi and (1 + x̄i + ȳi ) terms
for i ∈ [0, µ − 1]. We are able to compute (1 + x̄i ) · ȳi for
all i using only 1 homomorphic multiplication by applying
the SIMD technique. Now, we must compute

∏µ−1
k=i dk for

each i ∈ [1, µ − 2]. As stated above, a naïve method incurs
O(µ2); however, using SIMD operations requires one to
perform only 2µ − 4 homomorphic multiplications, thereby
consuming log µ depth. Finally, we need to multiply (1+x̄i)· ȳi
by the result of the above computation, which also incurs
only 1 homomorphic multiplication. Thus, the total number
of homomorphic multiplications is equal to 2µ − 2.

Remark 1: We can address signed numbers by slightly
modifying the circuit. Assume that we place a sign bit in
the leftmost position of a value (e.g., 0 for a positive number
and 1 for a negative number) and use the two’s-complement
system. Then, for two µ-bit values x and y, comp(x̄, ȳ) =
c̄µ−1 + x̄µ−1 + ȳµ−1. It is evident that the case of two positive
numbers corresponds to x̄µ−1 = ȳµ−1 = 0̄.

C. Integer Addition Circuit

Suppose that for two µ-bit integers x and y and for an
integer ν > µ, we construct two ν-bit integers by padding with
zeros on the left. Then, a size-ν full adder faddν is recur-
sively defined as follows: faddν (x̄, ȳ) = (s̄0, s̄1, · · · , s̄ν−1),
with the sums s̄i = x̄i + ȳi + c̄i−1 and the carry-outs
c̄i = (x̄i · ȳi ) + ((x̄i + ȳi ) · c̄i−1) for i ∈ [1, ν − 1] with initial
values s̄0 = x̄0 + ȳ0 and c̄0 = x̄0 · ȳ0. The primary reason for
considering such a large full adder is to cover SQL aggregate
functions with many additions.

1) Our Optimizations: Our strategy for optimization is the
same as above. Namely, we express each sum and carry
in closed form and minimize the number of homomorphic
operations using SIMD operations. Consequently, the s̄i s
are written as follows: s̄i = x̄i + ȳi + ∑i−1

j=0 ti j , where

ti j =
(
x̄ j · ȳ j

)∏
j+1≤k≤i−1 (x̄k + ȳk) for j < i − 1 and

ti,i−1 = x̄i−1 · ȳi−1. When i = ν − 1 and j = 0, because
ν − 2 homomorphic multiplications are required, the circuit
has log(ν−2) depth. However, we must perform an additional
multiplication by x̄ j · ȳ j . Thus, the total depth amounts to
log(ν − 2) + 1. As before, the use of SIMD and parallelism
via automorphism allows us to evaluate the integer addi-
tion circuit using only 3ν − 5 homomorphic multiplications,

whereas a naïve method requires (ν3−3ν2+8ν)
6 homomorphic

multiplications.

IV. SEARCH-AND-COMPUTE ON ENCRYPTED DATASETS

In this section, we demonstrate how to efficiently perform
queries on encrypted data using the proposed circuit primi-
tives. We first describe our techniques in a general setting and
then show how our ideas apply to database applications.

A. General-Purpose Search-and-Compute

We begin by describing our basic idea for performing
a search operation over encrypted data. We assume that a
collection of data is partitioned into N µ-bit items denoted
by R1 ∥ · · · ∥ RN and that the data have been encrypted and
stored in the form of R̄1 ∥ · · · ∥ R̄N .

For a predicate ϕ on a ciphertext C, a search on encrypted
data outputs R̄i if ϕ(R̄i ) = 1̄ and 0̄ otherwise. More formally,
let ϕ : C → {0̄, 1̄} be a predicate on encrypted data. Then, we
say that Sϕ : CN → CN is a search on the encrypted data and
is defined as follows:

Sϕ(R̄1, . . . , R̄N ) := (ϕ(R̄1) · R̄1, . . . ,ϕ(R̄N ) · R̄N ).

We then extend this operation to a more general operation
on encrypted data, i.e., a search-and-compute operation on
encrypted data, as follows. Let F : CN → C be an arithmetic
function on encryptions. Then, for a restricted search Sϕ :
CN → CN , we say that (F ◦ Sϕ)(R̄1, . . . , R̄N ) is a search-and-
compute operation on encryptions.

Furthermore, we quantify the efficiency of such search-
and-compute operations on encrypted data in Theorem 1.
This theorem states that if we can perform a search on
encrypted data restricted by a ϕ that specifies only the equality
operator, then a search query on the encrypted data requires
N(2A+ log µM) homomorphic operations in total. If the pred-
icate ϕ allows one to specify all the comparison operators in
the set {<,≤,>,≥, ̸=}, then we can perform Sϕ(R̄1, . . . , R̄N )
using O(µN) homomorphic multiplications.

Theorem 1: Let M(ϕ) and M(F) be the total numbers of
homomorphic multiplications for ϕ and F, respectively. Then,
we can perform (F ◦ Sϕ)(R̄1, . . . , R̄N ) using O(N(M(ϕ)) +
M(F)) homomorphic operations. Specifically, we can perform
a search on encrypted data restricted by ϕ using at most
O(N(M(ϕ))) homomorphic operations.

Proof: Because homomorphic multiplication
dominates the performance of the operation, we may
consider only operations of this type. Because the
predicate ϕ requires O(M(ϕ)) homomorphic operations, we
see that Sϕ requires O(N(M(ϕ))) homomorphic operations
to compute the predicate N times. Thus, the operation uses
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TABLE II

COMPLEXITY OF SEARCH QUERIES

O(M(F)) homomorphic operations to evaluate an arithmetic
function F on encrypted data. Therefore, we can conclude
that the total computation complexity of the search-and-
compute operation on encryptions is O(N(M(ϕ)) + M(F)).
In particular, when we consider a search on encrypted data,
F can be regarded as the identity map. Therefore, we can
perform a search on encrypted data restricted by ϕ using at
most O(N(M(ϕ))) homomorphic operations. !

B. Security Evaluation

Secrecy against a semi-honest DB server is ensured because
encrypted data cannot be leaked due to the semantic secu-
rity of our underlying SWHE scheme. Secrecy against a
semi-honest DB user therefore follows because the result of
a query expressed by our circuit primitives is equivalent to 0̄
if the specified conditions do not hold; therefore, the resulting
ciphertext is equal to 0̄. This implies that the evaluated
ciphertexts do not leak any information except for the number
of unsatisfied tuples.

C. Applications to Encrypted Databases

We use R(A1, . . . , Ad) to denote a relation schema R of
degree d consisting of attributes A1, . . . , Ad , and we use Ā j
to denote the corresponding encrypted attribute. As mentioned
above, we use A(i)

j to denote the j -th attribute value of the
i -th tuple, and for convenience, we assume that each has a
length of µ bits.

1) Search Queries
a) Simple selection queries: Consider a simple retrieval

query, as follows:

select A j1, . . . , A js from R where A j0 = α; (Q.1)

where α is a constant value.
An efficient construction of (Q.1) using our equal circuit

is as follows:

equal
(

Ā(i)
j0

, ᾱ
)

·
(

Ā(i)
j1

, . . . , Ā(i)
js

)
(Q̄∗.1)

for each i ∈ [1, N]. It follows from Theorem 1 that (Q̄∗.1)
has the complexity evaluation given in Table II.

b) Conjunctive & disjunctive queries: The query (Q.1)
can be extended by adding one or more conjunctive or disjunc-
tive conditions to the where clause. Consider a conjunctive
query as follows:

select A j1, . . . , A js

from R
where A j ′1

= α1 and · · · and A j ′τ = ατ ; (Q.2)

The query (Q.2) is expressed as follows: For each
i ∈ [1, N],

∏τ
k=1 equal

(
Ā(i)

j ′k
, ᾱk

)
·
(

Ā(i)
j1

, . . . , Ā(i)
js

)
. (Q̄∗.2)

A disjunctive query whose logical connectives are all ors
can also be evaluated by changing the predicate to

(
1 + ∏τ

k=1

(
equal

(
Ā(i)

j ′k
, ᾱk

)
+ 1

))
.

With τ denoting the number of connectives, (Q̄∗.2) requires
an additional depth of log τ compared with (Q̄∗.1) to compute
the multiplications among the τ equality tests. Table II reports
the complexity analysis.

2) Search-and-Compute Queries: We continue to present
important real constructions as an extension of Theorem 1,
in which F is one of the built-in SQL aggregate functions:
sum,avg,count and max. We begin with the case of
F = sum.

a) Search-and-sum query: Consider the following sum
query:

select sum(A j1) from R where A j0 = α; (Q.3)

As mentioned above, because our plaintext space is Z2,
repeatedly applying simple homomorphic additions does not
ensure correctness, which is the motivation for our integer
addition circuit (see Section III-C). Using this circuit, we can
efficiently perform (Q.3), which is expressed as follows:

faddµ+log N

(
equal

(
Ā(i)

j0
, ᾱ

)
· Ā(i)

j1

)
. (Q̄∗.3)

Because the result of the search-and-sum query is less
than 2µ N , using a full adder of size ν = µ + log N to add all
the values is sufficient. Using our optimized equality circuit,
(Q̄∗.3) requires N equality tests in total and N homomorphic
multiplications for each result of the test. Thus, the total
computational cost is (2N + ν(N − 1))A + (N (1 + log µ) +
(N − 1) (3ν − 5) M with the depth 1 + log µ +
log N (1 + log(ν − 2)) according to Theorem 2 below.

Theorem 2: Let |R| denote the cardinality of a set of tuples
from a relation schema R. Suppose that all keyword attributes
in the where clause and all numerical attributes in the
select clause have ∥kwd∥ bits and ∥num∥ bits, respectively.
Then, a search-and-sum query can be processed with the depth

1 + ⌈log(∥kwd∥)⌉
+ ⌈log |R|⌉ · (1 + ⌈log (∥num∥+ ⌈log |R|⌉ − 2)⌉).

Proof: The query (Q̄∗.3) consumes 1 + ⌈log(∥kwd∥)⌉
levels for the computation of all equality tests. Then, it
performs (|R| − 1) full-adder operations on the results, each
of which is of size (∥num∥ + ⌈log |R|⌉) and consumes
(1 + ⌈log (∥num∥+ ⌈log |R|⌉ − 2)⌉) levels. !

b) Search-and-count query: We observe that search-and-
count queries can be processed in a similar manner. For
example, assume a search-and-count query with count(∗) in
place of sum(A j1) in (Q.3). This query can also be efficiently
processed using faddlog N

(
equal

(
Ā(i)

j0
, ᾱ

))
.
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c) Search-and-avg query: To process a search-and-
compute query with the avg aggregate function, it is suffi-
cient to compute multiple search-and-sum queries because an
average can then be obtained by applying one division after
decryption.

d) Search-and-max(min) query: It is evident that one can
obtain the max (or min) aggregate function by repeatedly
applying the comp circuit primitive.

3) Join Queries: Now, we design join queries within the
search-and-compute paradigm. Suppose that we have another
relation S(B1, . . . , Be) consisting of M tuples, where M ≤ N .
First, we consider a simple join query, as follows:

select r.A j1, . . . , r.A js , s.B j ′1
, . . . , s.B j ′

s′
from R as r, S as s
where r.A jk = s.B j ′

k′
; (Q.4)

Then, this type of query can be expressed as follows: For each
i ∈ [1, N], i ′ ∈ [1, M],

equal

(
r. Ā(i)

jk
, s.B̄(i ′)

j ′
k′

)
·
(
r. Ā(i)

j1
, s.B̄(i ′)

j ′1
, . . .

)
. (Q̄∗.4)

For fixed i and i ′, we suppose that each numeric-type attribute
is packed in only one ciphertext. Then, the only difference
from (Q̄∗.1) is that (Q̄∗.4) requires two homomorphic mul-
tiplications by the results of the search operations; thus, we
must perform N M equality tests in total. Hence, the depth
of the circuit needed to process (Q̄∗.4) is 1 + log µ, and the
computational complexity is (2N M) A + N M (2 + log µ) M.

Next, we consider an advanced join query (Q.5) with
two aggregate functions sum(r.A j ) and count(∗) and the
same simple condition as for (Q.4). Assuming sum(r.A j ) <
2µN M , we use a full adder of size ν = µ + log (N M).
By contrast, the result of count(∗) is < N M , and it is
sufficient to use a full adder of size log (N M). Thus, one
candidate circuit construction for (Q.5) is as follows:

faddµ+log N M

(
equal

(
r. Ā(i)

jk
, s.B̄(i ′)

j ′
k′

)
· r. Ā(i)

j

)
,

faddlog N M

(
equal

(
r. Ā(i)

jk
, s.B̄(i ′)

j ′
k′

))
. (Q̄∗.5)

With respect to sum(r.A j ), this is identical to (Q̄∗.3) except
for the number of operands of the additions. Therefore, the
depth for evaluation amounts to

1 + log µ + log(N M) (1 + log(ν − 2)),

and the computation complexity is

(2N M + ν(N M − 1))A
+ (N M (1 + log µ) + (N M − 1) (3ν − 5)) M.

V. PERFORMANCE IMPROVEMENTS

There is still room to further improve the performance of
the circuit primitives in Section III. Our strategies consist of
three interrelated components: switching the message space
Z2 to Zt ; adapting the circuit primitives to Zt ; and fine-tuning
the circuit primitives, again using SIMD operations.

TABLE III

RUNNING-TIME COMPARISONS IN Z2 AND Z214

A. Larger Message Spaces With Lazy Carry Processing

If we encrypt messages in a bit-by-bit manner, the
primary advantage is that the two comparison operations are
very cheap; however, applying an integer addition circuit to
encrypted data is expensive (see Table III). Instead, it would
be of substantial benefit to take the message domain to be a
large integer ring if doing so would allow one to efficiently
evaluate the addition circuit with much lesser depth. One of
the important motivations for using such a large message space
is that the bit length of the keyword attributes (e.g., ≤ 20 bits)
in the where clause is generally smaller than that of the
numeric-type attributes (e.g., ≥ 30 bits) in the select clause.

Specifically, if we represent a numeric-type attribute A in
the radix 2ω, then we have

∑

i

A(i) =
∑

k

∑

i

[A(i)]k · (2ω)k;

therefore, it is sufficient to compute
∑

i [A(i)]k over the
integers. Assuming that the plaintext modulus t is sufficiently
large, we are able to perform addition without overflow in Zt .
Note that we only need to process carry operations after
computing each of them over the large integer ring.

To verify the performance improvement achieved through
integer encoding, we report the running time for each circuit
primitive in Table III. We suspect that integer encoding yields
greater benefits in the performance of search-and-compute
queries because aggregate functions rely extensively on addi-
tion. The experimental results presented in Table III used
102 integers in Zt randomly generated by the NTL library
routines.

B. Calibrating Circuit Primitives

It is clear that the use of a different message space must
result in modifications to our circuit primitives. Prior to dis-
cussing our modifications in detail, we must determine certain
lower bounds on the depth for homomorphic multiplication
as a function of t . We have two types of homomorphic
multiplications: multiplying a ciphertext by another ciphertext
and multiplying a ciphertext by a known constant. We formally
state the corresponding depth bounds in Theorem 3.

Theorem 3: Suppose that the native message space of the
BGV cryptosystem is a polynomial ring Zt [X]/⟨"m(X)⟩ and
that a chain of moduli is defined by a set of primes of
approximately the same size, p0, · · · , pL , that is, the i -th
modulus qi is defined as qi = ∏i

k=0 pk. For simplicity, assume
that p is the size of the pks. Let us denote by h the Hamming
weight of the secret key. For i ≤ j , let c and c′ be normal
ciphertexts at levels i and j , respectively. Then, the depth
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Fig. 3. Experimental Results for d̃ and d̃c.

for the multiplication of c and c′, which is denoted by d̃,
is the smallest nonnegative integer that satisfies the following
inequality:

t2 · φ(m) · (1 + h) · ([q−1
i ]t )

2 < 6 p2·d̃.

In addition, the depth for the multiplication of c by a constant,
which is denoted by d̃c, is the smallest nonnegative integer for
which the following inequality holds:

φ(m) · (t/2)2 < p2·d̃c .
Proof: Before multiplying two ciphertexts, we set their

noise magnitude to be smaller than the pre-set constant
B = t2φ(m)(1 + h)/12 via modulus switching. Subsequently,
we obtain a tensor product of the ciphertexts, and the result has
a noise magnitude of 2B([q−1

i ]t )2. Next, scale-down is per-
formed by removing small primes pk from the current prime
set of the tensored ciphertext; we use + to denote the product
of the removed primes. We then have 2B2([q−1

i ]t )2/+2 < B .
By assumption, it may be considered that + = pd̃, which
means that d̃ is the smallest nonnegative integer that satisfies
the inequality 2B([q−1

i ]t )2 < p2·d̃.
We now consider the case in which c is multiplied by a con-

stant. As above, we obtain a noise estimate of B ·φ(m)·(t/2)2.
Thus, we see that d̃c is the smallest nonnegative integer that

satisfies the inequality φ(m) · (t/2)2 < p2·d̃c . !
In Figure 3, we graphically depict the experimental results

for the depth d̃ of classical homomorphic multiplication and
the depth d̃c of homomorphic multiplication by a constant
when the bit length of the plaintext modulus (log t) is varied
from 1 to 35 under the following assumptions: security para-
meter κ = 80, the Hamming distance h = 64, and m = 13981.
As a concrete example, we have d̃ = 2 and d̃c = 1
in Z214 .

We now describe the basic concept that underlies our
modifications. It is well known that for x, y ∈ {0, 1}, the
following properties hold:

x ⊕ y = x + y − 2 · x · y and x ∧ y = x · y,

where +, −, and · are arithmetic operations over integers.
Based on this observation, our equality test can be rewritten

TABLE IV

COMPLEXITY OF SEARCH-AND-SUM QUERIES

as follows:

equal(x̄, ȳ) =
µ−1∏

i=0

(1− x̄i − ȳi + 2 · x̄i · ȳi ) .

We can then see that for only a small additional cost, we can
construct a new arithmetic circuit for an equality test operating
on Zt . Next, consider the comp circuit on Zt . Recall that the
closed form of c̄µ−1 is

c̄µ−1 = (1− x̄µ−1) · ȳµ−1

+
µ−2∑

i=0

(1− x̄i ) · ȳi · (di+1di+2 · · · dµ−1).

Rather than d j = (1 + x̄ j + ȳ j ), we set d j = (1 + 2 · x̄ j · ȳ j −
ȳ j− x̄ j )·(1+2· x̄ j · ȳ j−2ȳ j ). Table IV presents the complexity
results for search-and-compute queries on encrypted databases
of N tuples with µ-bit attributes that are obtained when using
the new message space Zt .

VI. EXPERIMENTAL RESULTS

This section illustrates the processing performance achieved
for queries expressed using our optimized circuit primitives.
The essential goal of the experiments presented in this section
is to verify the efficiency of our solution in terms of perfor-
mance.

All of the experiments reported in our paper were per-
formed on a machine with an Intel Xeon 2.3 GHz processor
with 192 GB of main memory running the Linux 3.2.0
operating system. All methods were implemented using the
GCC compiler version 4.2.1. In our experiments, we used a
variant of a BGV-type SWHE scheme [17] with Shoup’s NTL
library [22] and Shoup-Halevi’s HE library [23]. Throughout
this section, when we report average running times, we exclude
the computing times for data encryption and decryption.

The complete source code for our experimental implemen-
tations is available upon request from the authors.

A. Test Datasets and Queries

Our solution supports basic conjunctive and disjunctive
retrieval queries with aggregate functions. Similarly, we can
implement an SQL query with join conditions. Currently,
because all computations are performed on ciphertexts, it
is difficult to support SQL queries with the order by
and group by clauses in an efficient manner. Thus, our
experiments focus on retrieval and aggregate queries with
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small numbers of Boolean conditions. Readers in the database
community may consider that our solution can optimistically
handle five—Q1, Q3, Q5, Q10, and Q15—out of 22 TPC-H
queries, but without the order by and group by clauses.

For simple retrieval queries, our experiments were con-
ducted over a table of single 300- or 320-tuples consisting
of all numeric-type attributes, and all attribute values were
15-bit random integers. In the case that these queries have
comparison operators rather than equality, our experiments
were conducted while varying the number of tuples (102, 103,
and 104), and each tuple had 75 ∼ 200 attributes of 14- and
17-bit lengths. For search queries with aggregate functions, our
experiments used a table with 102, 103, and 104 tuples, and
each tuple was composed of 75 ∼ 200 attributes, whose sizes
were at most 16-bit. Join queries were tested over two tables
whose tuple sizes were 10 and 100, respectively, but every
tuple had 300 attributes in a 15-bit integer domain.

In the remaining sections, we denote by N the number of
tuples, by s the number of attributes, and by τ the number of
comparison operators.

B. Adjusting the Parameters

The keyword attributes are expressed in a bit-by-bit manner,
and each bit is an element of Z2r . In addition, the numeric-type
attributes are expressed using the radix 2ω but are elements
of the same space, Z2r . We begin by observing the following
relation among the parameters.

Theorem 4: Let A be a numeric-type attribute. For a pos-
itive integer ω ≥ 1, suppose that each attribute is written as
A = ∑

k[A]k · (2ω)k with 0 ≤ [A]k < 2ω. Then, to process a
search-and-sum query, one can consider a plaintext modulus
with r = ,(ω + log(εN)).

Proof: The purpose of the theorem is to provide a bound
on the size of plaintext moduli; therefore, we simply omit the
overbars for all variables. Let us use ϕ to denote a predicate
on encrypted data and A∗ to denote a keyword attribute. Then,
a search-and-sum query can be written as

∑

i

Sϕ(A∗,α) · A(i) =
∑

k

(
∑

i

Sϕ(A∗,α) · [A(i)]k

)

· (2ω)k .

We then have
∑

i

Sϕ(A∗,α) · [A(i)]k < 2ω
∑

i

Sϕ(A∗,α) = 2ω · (εN).

Thus, for a database with N records, it is sufficient to choose r
such that 2ω · (εN) ≤ 2r . Note that the larger we make the
plaintext modulus 2r , the more noise there is in the cipher-
texts, and thus, the faster we consume the ciphertext level.
Therefore, it appears that ω+ log(εN) is a tight bound on the
parameter r . !

One may wonder why Sϕ(·, . . .) does not take multiple key-
word attributes in the proof. However, because we consider the
selectivity ratio, it does not need to do so. In our experiments,
we varied the selectivity ratio from 5 to 40% and plotted the
average running times of queries over databases.

TABLE V

PERFORMANCE FOR (Q̄∗.1) AND (Q̄∗.2)

C. Experiments for Search Queries

We measured the running times of the simple retrieval
queries (Q̄∗.1) and (Q̄∗.2), which merely require search oper-
ations over encryptions. We assumed that a numeric-type
attribute was expressed using the radix 215. We took Z15 as
the message space so that each attribute was encoded into
two slots per ciphertext.

The query (Q̄∗.1) is efficiently processed using only the
equality test. We chose a ring modulus m such that the number
of plaintext slots was divisible by 10, and there existed an
element g ∈ Z∗m of order 10 in Z∗m and Z∗m/⟨2⟩. Thus, an entire
keyword attribute could be packed into only one ciphertext.
Furthermore, there was a Frobenius automorphism of cyclic
right shifts over those 10 plaintext bits. We used m = 13981;
thus, each of the ciphertexts held 600 plaintext slots.

The query (Q̄∗.2) has two or more equality tests in the
where clause (i.e., τ ≥ 2). We performed experiments for
τ = 2 and τ = 4. For τ = 2, we used m = 13981 as
before. For the τ = 4 case, we chose m = 20485 to support
a larger number of multiplications; thus, each ciphertext held
640 plaintext slots.

For N = 1, the experiment for the query (Q̄∗.1) is presented
in the top row of Table V and that for (Q̄∗.2) is presented
in the bottom two rows of Table V, where τ is the number
of comparison operaters, s is the number of numeric-type
attributes, m is a ring modulus of the plaintext space, and
L is the number of ciphertext moduli.2

D. Experiments for Search-and-Sum Queries

We conducted a series of additional experiments to measure
the performance for search-and-sum queries. Because each
ciphertext can hold ℓ plaintext slots of elements in Z2r and
because a numeric-type attribute with a length of 30 bits is
encoded into ω̃ (= ⌈30/ log(2ω)⌉ = ⌈30/ω⌉) slots, we can
process s (= ⌊ℓ/ω̃⌋) attributes per ciphertext.

At first glance, a larger ω would appear to be better.
However, if ω is too large, then by Theorem 4, the plaintext
modulus 2r becomes large, which results in an increased
circuit depth. Therefore, we must choose a sufficiently large ω
such that the resulting plaintext space is not too large.

We divided our experiment into four cases by predicate
type: (a) single equality, (b) multiple equality, and (c) single
comparison. We recommend that the reader review the original
reference [24] for other experiments in greater detail.

2We assumed that the DB user sends his public key as well as the
encryptions of database records to the DB server once and for all. Hence we
considered only the number of bits of queries and corresponding responses
for the communication complexity in Table V.
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TABLE VI

EXPERIMENTS FOR CASE I (τ = 1)

TABLE VII

EXPERIMENTS FOR CASE II (τ = 2)

TABLE VIII

EXPERIMENTS FOR CASE II (τ = 4)

a) Case I: single equality: In this case, one equality test is
contained in the where clause. We chose the plaintext spaces
by Theorem 4 while varying N from 102 to 104. Using the
same encoding method for keyword attributes as in (Q̄∗.1), we
also used m = 13981 so that we could have processed SIMD
operations with 600 plaintext slots in Table VI.

b) Case II: multiple equality: In this case, we performed
experiments with τ = 2 and τ = 4 equality tests in the where
clause. When τ = 2, we used m = 13981 as before, while
m = 20485 for the other case. Compared with queries in
the conjunctive form, disjunctive-form queries require more
addition operations. However, both types of queries require the
same depth; therefore, their running times are not significantly
different.

The results are presented in Table VII and Table VIII (the
6th column of each table consists of two parts: the left part
corresponds to conjunctive-form queries, and the right part
corresponds to disjunctive-form queries.)

c) Case III: single comparison: In this case, one greater-
than comparison is contained in the where clause. For the

TABLE IX

EXPERIMENTS FOR CASE III

Fig. 4. Experimental Results for Search-and-Sum Queries.

TABLE X

EXPERIMENTS FOR (Q̄∗.4)

experiments, we used m = 20485 for the case of L = 20,
whereas in all other experiments, we used m = 13981.
We report the experimental results in Table IX.

The results for Case IV are very similar to those for
Case II. Thus, because of space limitations, we have omitted
the experimental results for Case IV.

To facilitate comparison, in Figure 4, we graphically depict
the experimental results described above for a fixed selectivity
ratio ε of 10%.

E. Experiments for Join Queries

In this subsection, we report several experiments for join
queries. We measured the average running time required for
processing a single equality test while varying N and M
from 10 to 102 for fixed s = s′ = 300. Table X reports
the experimental results for (Q̄∗.4). As N and M increase,
the running time of the algorithm also linearly increases.
Table XI presents the experimental results for (Q̄∗.5) with
the selectivity ratio fixed at 10%. Because the experiments
for (Q̄∗.5) required more aggregation operations than those
for (Q̄∗.4), the queries required a longer time to run.
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TABLE XI

EXPERIMENTS FOR (Q̄∗.5)

VII. LITERATURE REVIEW

We begin by presenting the results most closely related
to our work, which are aimed at supporting general
DB queries in a private manner. TrustedDB [25] has achieved
the desired goal, but it requires a secure co-processor
for processing on sensitive data. Hacigümüs et al. [26]
attempted to support general DB queries in a private manner.
Hore et al. [27] claimed that their schemes could support range
queries while maintaining privacy. However, they were later
found to reveal the underlying data distributions. Recently,
Ada Popa et al. showed that their CryptDB [14] system
can very efficiently process even general types of database
queries. However, because CryptDB is based on layering
in deterministic encryption, OPE, and additive HE, it needs
to decrypt encrypted attributes if multiplication operations
on them are required. Quite recently, Tu et al. [15] pro-
posed an enhanced variant of CryptDB on the practical side,
called Monomi. Their solution introduces some elaborate tech-
niques for achieving better performance. For example, because
Paillier’s cryptosystem cannot support multiplications of two
ciphertexts, multiplication of two column values should be
encrypted in advance, and furthermore, some queries should
be rewritten for being executed in a client machine. Monomi
reuses Paillier ciphertexts to save the amount of space wasted
in encryption. However, Monomi inherits most of the security
drawbacks from CryptDB.

There have been many other results for special types of
queries, such as Boolean queries or aggregate queries. For
example, private information retrieval (PIR) [28] enables a
DB user to retrieve a tuple from a DB without revealing which
tuple the DB user is retrieving. However, the DB user must
provide a set of indices of target tuples [29], and it may not
have any such index information. Olumofin and Goldbeg [30]
extended PIR to SQL-enabled PIR for the private processing of
general DB queries. They focused on ensuring query privacy
but not data privacy.

Searchable encryption (e.g., [7], [9], [10]) allows a DB user
to search for a specific keyword by submitting a trapdoor
without revealing any keywords or original data. With this
searchability, the database community has proposed various
applications. Yang et al. [31] and Wen et al. [32] pro-
posed a scheme for the private processing of conjunctive
queries, and recently, Lin and Wong [33] proposed a solution
for private disjunctive queries using OPE and bucketization.
Boneh and Waters [34], Lu [35], and Wen et al. [36] showed
that predicate encryption can be used in private range queries.
However, schemes falling in this category may support only
search functionality, and some of them based on weakly secure
encryption such as OPE might leak the coupling distribution

between plaintext and ciphertext domains. Other works, such
as [37] and [38], assume that there is a set of mutually trusted
and host participants. Ge and Zdonik considered the same
security model [39]. Their scheme, however, is restricted to
aggregate queries.

We note that there are solutions designed by somewhat
different approaches. Pappas et al. [40] proposed a system
for private queries by efficiently fusing together with Yao’s
garbled circuit and Bloom filter. Unfortunately, their solution
only supports search queries. Later, Wang and Ravishankar’s
scheme [41] utilized scalar-product encryption, and
Arasu and Kaishik [42] showed that oblivious RAM
can be used in private query processing. However, the former
works on a too weak security model, and the latter provides
a purely theoretical result.

VIII. FURTHER DISCUSSION

CryptDB and Monomi are located on the other extreme side
with high performance, while our general solution is the one
extreme with high security. Here, we list a few fascinating
open problems that remain.

• The grand challenge is to improve the performance of
underlying FHE schemes. A more modest goal is to
find a way to minimize the usage of an FHE scheme
by load-balancing with group homomorphic encryption
compatible with the FHE scheme. Other tools, perhaps
borrowing from a different representation of queries other
than circuits, may lead to more efficient performance.

• Although FHE has a long way to go in its practical uses,
the good news is that there have been significant improve-
ments in HE schemes (e.g., [43]–[45]). We expect to have
much faster performance in near future by applying more
efficient FHE schemes to our current protocol instead of
the BGV scheme.

• Our results to date scratch the surface of an FHE-
based general framework for private query evaluation
and only implement general but relatively simple queries.
These are just starting points on FHE-based private query
processing and we need to implement a prototype of our
solution working on top of a real DBMS, such as MySQL,
which can be a final goal of our research.
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