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Motivation 
Secure computing techniques such as Ring-LWE-based Homomorphic Encryption  (HE) offer 1

the possibility of general computing on data while the data remains encrypted. Practical and 
usable homomorphic encryption would lead to a sea change in outsourced (cloud) computation 
on privacy-critical data, and enable a number of application scenarios that are currently either 
impossible due to technical or legal reasons, or are possible but rely on costly and 
time-consuming legal processes. Although homomorphic encryption is still at an early point in its 
life cycle, there has been consistent, substantive, and rapid progress in making it practical from 
a performance standpoint. homomorphic encryption is increasingly being developed and applied 
in real-world applications supported by multiple open-source and proprietary libraries.  2

 
Applications of homomorphic encryption fundamentally involve distributed applications where 
ciphertexts, public keys, and additional low-level information needs to be shared between data 
providers, encrypted computing hosts, and the desired recipients of the results of the 
computation. Furthermore, homomorphic encryption applications are built around low-level 
“circuits”, the designing of which is a complex and error-prone task, analogous to programming 
in assembly language on a machine with a very limited instruction set. In many cases the 
developer will need to carefully manage and consider low-level aspects of how the data is 
organized inside ciphertexts. To make homomorphic encryption practical to use by application 
developers, these challenges need to be overcome. This is the goal of the API standardization 
effort. 
 
This white paper is being written with the engagement and leadership of the major teams 
developing open-source homomorphic encryption libraries. Our intent is to motivate, plan, and 
begin the standardization of an API for homomorphic encryption, and share our thoughts with 
interested parties in government, industry, and academia for a broader and more official 
standardization effort. 

1 Homomorphic Encryption includes both Somewhat Homomorphic Encryption (SHE) and Fully 
Homomorphic Encryption (FHE) variants. 
2 Recent open-source RLWE-based homomorphic encryption libraries include HElib, SEAL, NFLlib and 
PALISADE. 

 



 

High-Level Outline 
As a first step in overcoming the challenges described above, we need to outline a minimal API 
that absolutely needs to be designed and standardized, and determine and develop an 
appropriate level of abstraction. This includes describing (1) a ​storage model ​ to identify what 
needs to be included to both serialize and deserialize keys, ciphertexts, plaintexts, encryption 
parameters, and scheme/implementation dependent data, and to support homomorphic 
computations; (2) an ​assembly language ​ -like representation of homomorphic encryption 
programs, consisting of low-level library calls. These two topics will form the core of the 
homomorphic encryption standard. 
 
While useful, a standard storage model and a homomorphic encryption assembly language are 
unlikely to be enough to enable widespread use of homomorphic encryption by application 
developers due to the difficulties involved in directly interacting with the libraries. Thus, the next 
step is to create ​circuit compilers​ that transform the business logic described by application 
developers into library calls, optionally optimizing the computation in the process. We view this 
as describing a ​programming model ​ for homomorphic encryption, representing the business 
logic layer, describing how application developers interact with circuit compilers, and how the 
compiler interacts with the libraries to perform its tasks. Our initial position is that the 
programming model will be increasingly important for later application use, but that it is not yet 
mature enough for the current standardization effort. Thus, we believe that the programming 
model discussion should happen outside—yet in tandem with—the development of the first 
version of the homomorphic encryption standard. We have included a preliminary approach to 
the programming model in Appendix B. 
 
Our intention is to commence standardization based on a single homomorphic encryption 
scheme and a reference implementation. However, we hold that a standard API should be 
sufficiently general to support multiple homomorphic encryption schemes, as naturally expected 
improvements in schemes are made. In particular, the API should be designed to be flexible and 
compatible enough to support different application scenarios with reasonable performance 
metrics. As explained above, our thought is that the API is used in a circuit compilation 
ecosystem, where high-level programs and both dynamically and statically specified parameters 
are compiled into execution circuits for the libraries. Additionally, some scheme parameters 
should be able to be dynamically updated at the commencement of execution for applications 
adaptation. 
 
As such, we present the high-level components here, and expand on these components below: 
 

1. Storage Model, which includes 
○ Cryptographic Context ​to represent all data needed for serialization of 

deserialization of keys, plaintexts, and ciphertexts. This includes a target 
homomorphic encryption scheme identifier, scheme variant identifier, library 

 



 

identifier, encryption parameters such as security level, key weights, and 
distribution parameters. 

○ Payload Representation ​ of the keys, plaintexts, and ciphertexts; we include this 
for standardization, because this information is used by homomorphic encryption 
program compilers during execution. 

 
2. Homomorphic Encryption Assembly Language 

○ Circuit Description ​ information, which includes information on the circuits being 
executed; these circuits can be hand-constructed, or output by tools such as a 
homomorphic encryption circuit compiler. These circuits include low-level calls to 
library functions, and can be to some extent library-specific for optimizations. 

 
3. Programming Model (outside of the standard) 

○ Business Logic Layer​ information, which includes a representation for the 
application logic. 

○ Circuit Compiler Description ​, which includes information on how a circuit compiler 
converts the business logic into homomorphic encryption assembly language 
circuits, executable by a homomorphic encryption library, possibly in a runtime 
environment. 

 
Note that on purpose we do not discuss program compilation and usage because we do not feel 
there is yet a need to specify compiler operation. Note also that although many use cases 
include a focus on multiparty data operations and multiparty homomorphic operations are 
becoming more widely used, we do not yet begin to standardize these concepts because the 
security and interaction models needed to commence API standardization are still being formed. 
 

Storage Model 
In some sense the storage model API is the most mature, in that it follows existing design 
patterns for encryption API standards. A possible complication is that multiple homomorphic 
encryption schemes may eventually need to be standardized. However, an initial solution is to 
focus on the most widely used homomorphic encryption scheme, notionally the 
Fan-Vercauteren (FV) scheme ​ [FV12], although the ​Brakerski-Gentry-Vaikuntanathan (BGV) 

scheme ​ [BGV12] is also a viable candidate. 

Cryptographic Context  
The core storage challenge for lattice cryptography is that of storing elements. A common and 
generic way of storing elements, i.e. (public/private/evaluation) keys, ciphertexts, and optionally 
plaintexts in homomorphic encryption is to use arrays, which can be either one-dimensional or 
multidimensional. The elements of an array can be polynomial coefficients, finite field elements, 
bits, integers modulo a non-prime modulus, or higher level objects.  

 



 

The Cryptographic Context​ ​captures the state of homomorphic encryption/evaluation session, 
instructs the compiler how to generate a circuit, and further determines the cryptographic library 
that provides the instruction set.​ ​The Cryptographic Context includes the following parts:  

● Scheme ID 

○ Identifies the homomorphic scheme in use, for example, BGV or FV; the Scheme 
ID allows any party (compiler, application, etc.) to extract correct scheme 
dependent parameters based on this ID.  

○ Variants of a homomorphic scheme should have distinguishable IDs. For 
example, "BGV standard" and "BGV variant" can have different APIs, storage 
structures, and parameters. The functionality of a compiler or an application 
relies on separation at this level.  

○ Multiple implementations of the same scheme may share the same scheme ID if 
and only if they have identical scheme dependent parameters. For example, 
"BGV standard" can be implemented by two libraries, where only the low-level 
execution of instruction sets differ. The same behavior of an application and a 
compiler has to be ensured. This allows developers to choose compatible 
alternative implementations and libraries.  

● Scheme Independent Parameters 

○ RLWE parameters, that define the form of ciphertext data, and its serialized 
format.  

○ Plaintext Parameters:  
■ Plaintext dimensions, that describe the plaintext size as a matrix 

(two-dimensional array); the size of the array can be restricted by the 
particular scheme, encryption parameters, and the user’s choice of the 
plaintext modulus (below). 

■ Plaintext modulus: an integer that describes the modulus for the entries of 
the plaintext matrix. 

○ Key Payload, that defines the form and serialization format of keys. 
● Scheme Dependent Parameters 

○ Non-standard information specified per particular scheme or implementation; 
○ The Scheme ID identifies the format of the Scheme Dependent Parameters. 

Payload Representation 
If Cryptographic Contexts can be thought of as metadata for the information being stored, the 
core storage challenge is the representation of the actual payload of keys, plaintexts and 
ciphertexts. Standardizing payload representation allows encryption scheme parameters and 
data elements in both encrypted or plaintext form to be serialized, transported and deserialized 
in a consistent manner that allows unique decoding across platforms and implementations by 
various vendors. Functions to serialize and to deserialize encryption scheme parameters, keys, 
and data pieces should be provided in the cryptographic libraries.  
 
Candidate standard information for payload representation includes: 

 



 

● Cryptographic Context 
○ Allows the extraction of Scheme Dependent Parameters according to the 

Scheme ID; 
● Ciphertext 

○ Includes ciphertext parameters, an array containing the ciphertext data, the 
Scheme ID, and optionally a ​noise budget​. 

● Plaintext 
○ Includes plaintext parameters, an array containing the plaintext data, and the 

Scheme ID.  
● Public Key, Private Key, Evaluation Keys 

○ Includes an array containing the key data, and the scheme ID. 
 

Homomorphic Encryption Assembly Language 
We believe that defining the “right” homomorphic encryption assembly language representation 
will be an iterative process, and thus in this white paper we only list the major features we 
believe such an assembly language should contain, but do not define the architecture or the 
language format itself. 
 
We imagine a system architecture, where the computation model is defined by arithmetic 
circuits. The operations that this circuit architecture could support are described below in 
Appendix A. Initially, the circuit architecture will contain fewer instructions, and as homomorphic 
encryption compilers improve, we can “push” more of the instructions from the underlying 
homomorphic encryption libraries to the circuit architecture. As an example, we can imagine an 
early instruction set only containing EvalAdd, EvalMultiply, and EvalSubtract, with instructions 
like Relinearization and ModReduce handled by the underlying library. As compilers improve, 
we can add, say, Relinearize to the circuit architecture. 
 
However, even these early compilers will need access to some information about the underlying 
homomorphic encryption implementation, such as noise growth and performance 
characteristics. Otherwise, the compilers will have no metrics to optimize against, limiting their 
effectiveness. Thus, defining some standard API for noise estimation, etc., is an important first 
step. 
 
Besides instructions, we need to define how the plaintext data itself is represented. As a first 
approach, we will assume that all plaintext data is encoded as matrices of integers modulo a 
plaintext modulus, as was already mentioned above. We take inspiration here from MATLAB, 
where every value, whether it is a scalar, vector, etc., is represented as a matrix. Each variable 
also encodes some context information, such as whether it is a plaintext or ciphertext. 
Ciphertexts additionally need to encode their current noise level and size. 
 

 



 

Thus, we consider a program in “homomorphic encryption assembly” as containing the following 
information: 
 

● Input information: 
○ Size of each input; 
○ Plaintext range / type of each input; 
○ Number of inputs / outputs. 

● Circuit representation of program, including a listing of the “instruction set” used in the 
circuit. 

● Meta-information on every wire, which includes: 
○ Flag of which wires are ciphertext or plaintext; 
○ Information for ciphertext wires 

■ Noise estimate; 
■ Length of ciphertext; 

○ Information for plaintext wires 
■ Plaintext space. 

● Additional Cryptographic Context information as needed to support every gate execution 
and input/output ciphertext. 

 
The execution can either be realized as a compiler that takes the homomorphic encryption 
assembly and outputs a target platform -specific program, or as a virtual machine that 
processes the homomorphic encryption assembly code directly. Such runtime environments 
may initially perform additional optimizations to the circuit, although we imagine that in the future 
these can be pushed to a high-level language compiler. 
 

Next Steps in Standardization 
The concepts and ideas in this white paper are but a first step on a long path to standardization 
of homomorphic encryption. As mentioned above, defining the “right” homomorphic encryption 
system architecture and assembly language will be an iterative process. We are currently a 
volunteer community working together with system engineers, compiler writers, and application 
users to balance inherent design trade-offs for an optimal community solution. 
 
As an initial short-term goal, we are continuing our standardization efforts with regular meetings, 
establishing a website for information sharing, and creating an opt-in mailing list for interested 
parties. Our goal for the next meeting is to present a prototype language description, which we 
could then discuss, debate and iterate on as a community. This will be done in close 
consultation with paired security and application development subgroups. We identify that we 
will particularly need to: 
 

● Formalize the Cryptographic Context; 
● Formalize the Payload Representations; 

 



 

● Formalize the Homomorphic Encryption Assembly Language and Circuit Representation; 
● Notionally select a homomorphic scheme to focus standardization efforts on; 
● Describe noise specifications; 
● Describe security parameter specifications; 
● Formalize the Programming Model (Appendix B). 

 

Appendix A 

Assembly Language for Homomorphic Encryption 
 
Instructions Natively Supported by Compiler 
 

● EvalAdd 
○ Computes and outputs the sum of two ciphertexts; or 
○ Computes and outputs the sum of a plaintext and a ciphertext; or 
○ Computes and outputs the sum of a ciphertext and a plaintext. 

● EvalSub 
○ Computes and outputs the difference of two ciphertexts; or 
○ Computes and outputs the difference of a plaintext and a ciphertext; or 
○ Computes and outputs the difference of a ciphertext and a plaintext. 

● EvalMult 
○ Computes and outputs the product of two ciphertexts; or 
○ Computes and outputs the product of a plaintext and a ciphertext; or 
○ Computes and outputs the product of a ciphertext and a plaintext. 
○ EvalMult does not perform relinearization. In the case of FV and BGV schemes 

the ciphertext size grows by one element after every multiplication. If key 
switching is required, Relinearize needs to be called explicitly. A simple compiler 
might choose to automatically follow every call to EvalMult with a call to 
Relinearize. 

● EvalNegate 
○ Computes and outputs the negation of a ciphertext. 

● EvalPermuteRow 
○ Permutes (e.g. rotates) a row of the underlying plaintext matrix. For instance, 

rotation by 1 of (1,2,3,...,n-1,n) produces (n,1,2,...,n-2,n-1). Internally, this 
requires key switching. 

● EvalPermuteCol 
○ Permutes (e.g. rotates) a given column of the underlying plaintext matrix. For 

instance, rotation by 1 of (1,2,3,...,n-1,n) produces (n,1,2,...,n-2,n-1). Internally, 
this requires key switching. 

 

 



 

Service Operations 
 
Service Operations​ are additional housekeeping operations that the user may or may not want 
the compiler to automatically inject into the circuit. In some cases, for performance reasons the 
user might want to hand-tune the locations of these operations, or the compiler can perform an 
optimization step to find the optimal locations. 
 

● Relinearize 
○ A unary operation that applies the relinearization operation to a given input 

ciphertext of arbitrary size (in practice the size can be capped to 4 or 5 if 
needed). Relinearization changes the size down. The number of size steps that 
the ciphertext can be relinearized by depends on the evaluation key data. 

○ Compiler can determine the evaluation key count and store it along with other 
parameters in the Cryptographic Context. 

○ Relinearization gates are injected, and their locations are determined according 
to optimization flags by the circuit compiler. 

○ An expert user might want to manually edit the locations of the relinearization 
gates, as the optimization problem can be hard and not correctly solved by the 
compiler. 

○ Relinearization would typically be implemented by the KeySwitch operation. 
○ Note: Relinearization has several meanings in literature, and the difference to key 

switching requires clarification. One suggestion is to have relinearization strictly 
refer to reducing the power of the secret key required in decryption, and key 
switching refer to a more general operation. In practice, this type of 
relinearization seems like the only form of key switching that a user might want to 
control, perhaps with the exception of proxy re-encryption. This is why KeySwitch 
is instead listed as a compiler operation. 

● Bootstrap 
○ A unary operation that resets the noise in a given input ciphertext to a specific 

level determined by the parameters in Cryptographic Context. 
○ Note: Bootstrapping is a very expensive operation in most implementations. 
○ The output ciphertext may and may not have same secret key as the input 

ciphertext. 
● ModSwitch 

○ Change ciphertext coefficient modulus to smaller or larger value. 
○ Can be a performance optimization (e.g. in FV scheme) or a necessary operation 

after (or as a part of) multiplication (e.g. in BGV scheme). 
○ In some cases valuable as final operation in circuits to reduce output size as 

much as possible to improve networking cost. 
 
Compiler Operations 
 
Compiler Operations​ are operations that are always controlled by the compiler. 

 



 

 
● KeySwitch 

○ Switches an input ciphertext from using one secret key to another secret key, 
without changing the underlying plaintext. 

○ Arbitrary size input ciphertexts are allowed, and the size of output ciphertext can 
also be arbitrary (but at least 2). Note: Relinearize only changes the size of the 
ciphertext. 

○ This can be injected automatically by the circuit compiler when the computation 
involves operations between two input ciphertext encrypted under different secret 
keys. 

 
Noise Estimation Operations 
 

● NoiseEstimate 
○ Used by the circuit compiler to estimate the noise growth in the current circuit and 

to guide optimization.  
 
Library-Specific Operations 
 
Each library can further provide optimized implementations of certain higher level operations, 
which a compiler can inject in a circuit optimization phase, or the developer can use either 
through “intrinsics”, or direct library calls. 
 

● EvalSquare 
○ Computes and outputs the square of an input ciphertext. 

● EvalCube 
○ Computes and outputs the cube of an input ciphertext. 

● EvalDotProduct 
○ Computes and outputs the dot product of two ciphertext vectors; or 
○ Computes and outputs the dot product of a plaintext vector and a ciphertext 

vector; or 
○ Computes and outputs the dot product of a ciphertext vector and plaintext vector. 

● EvalLinearTransformation 
○ Computes and outputs the product of two matrix ciphertexts such that the output 

encrypts the matrix product of the underlying input plaintext matrices. 
● EvalDFT 

○ Computes and output the Discrete Fourier Transform of an input ciphertext. 
● ReRandomize 

○ Re-randomizes a given ciphertext. Optionally, this can involve noise 
randomization operations. 

 



 

Appendix B 

Programming Model 
This section describes the programming model. We envisage an “LLVM-esque” architecture as 
the bridge between front-end languages and the back-end homomorphic encryption library; see 
above figure. Compilers can then be built to target this architecture, and homomorphic 
encryption libraries can be built to understand and evaluate programs in this architecture. Thus, 
the focus of standardization should be this Homomorphic Encryption System Architecture, and 
associated Homomorphic Encryption Assembly Language, rather than the compiler itself. By 
standardizing the Homomorphic Encryption System Architecture and associated Homomorphic 
Encryption Assembly Language, different compilers can be built without the need to understand 
the underlying homomorphic encryption library being used in the backend, and likewise the 
underlying homomorphic encryption libraries do not need to understand the high-level language.  
 
The most basic way of programming thus is to directly code in the Homomorphic Encryption 
Assembly Language that our architecture defines. This would likely be the approach taken by 
homomorphic encryption experts to get the most efficiency out of their implementation. 
However, non-experts could program in a higher-level language and rely on the compiler to 
generate the homomorphic encryption assembly code. We view this workflow as similar to uses 
of standard (e.g., x86) compilers in the 90s. During that time, most developers would program in 
a high-level language (say, Java or C++), and rely on the compiler to generate x86 code. 
However, compilers weren’t yet advanced enough to compete against well-written assembly 
code, and thus expert developers would often develop directly in assembly to attain the best 
possible performance.  
 
However, compilers quickly evolved to the point where hand-written assembly is needed only in 
very special circumstances, with existing compilers often producing code ​better​ than 
hand-written assembly. We imagine a similar evolution for homomorphic encryption compilers, 
where initially experts will continue to program directly in the Homomorphic Encryption 
Assembly Language. As compilers improve, there will be less of a need to program at this low 
level. 
 
Although our goal for now is to standardize the Homomorphic Encryption Assembly Language 
and not the Programming Model, or the high-level compiler, it is a useful exercise to walk 
through what such a compiler would look like. We can imagine a compiler which takes as input 
an imperative language and compiles it down to Homomorphic Encryption Assembly Language. 
Besides the input program, we also need to pass to the compiler (1) the number of inputs and 
outputs of the function; (2) the plaintext data type; (3) scheme parameters (which allows us to 
supply noise estimation on the outputs); (4) cost estimation for the various operators. Thus, the 
compiler will need some “behavioral model” of the underlying homomorphic encryption scheme 

 



 

being used—in particular, the compiler needs to be aware of the noise growth and performance 
characteristics of the various operations. 
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