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Abstract

Background: Security concerns have been raised since big data became a prominent tool in data analysis. For
instance, many machine learning algorithms aim to generate prediction models using training data which
contain sensitive information about individuals. Cryptography community is considering secure computation as
a solution for privacy protection. In particular, practical requirements have triggered research on the efficiency
of cryptographic primitives.

Methods: This paper presents a method to train a logistic regression model without information leakage. We
apply the homomorphic encryption scheme of Cheon et al. (ASIACRYPT 2017) for an efficient arithmetic over
real numbers, and devise a new encoding method to reduce storage of encrypted database. In addition, we
adapt Nesterov’s accelerated gradient method to reduce the number of iterations as well as the computational
cost while maintaining the quality of an output classifier.

Results: Our method shows a state-of-the-art performance of homomorphic encryption system in a real-world
application. The submission based on this work was selected as the best solution of Track 3 at iDASH privacy
and security competition 2017. For example, it took about six minutes to obtain a logistic regression model
given the dataset consisting of 1579 samples, each of which has 18 features with a binary outcome variable.

Conclusions: We present a practical solution for outsourcing analysis tools such as logistic regression analysis
while preserving the data confidentiality.
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Background
Machine learning (ML) is a class of methods in artifi-
cial intelligence, the characteristic feature of which is
that they do not give the solution of a particular prob-
lem but they learn the process of finding solutions to a
set of similar problems. The theory of ML appeared in
the early 60’s on the basis of the achievements of cy-
bernetics [1] and gave the impetus to the development
of theory and practice of technically complex learn-
ing systems [2]. The goal of ML is to partially or fully
automate the solution of complicated tasks in various
fields of human activity.

The scope of ML applications is constantly expand-
ing; however, with the rise of ML, the security problem
has become an important issue. For example, many
medical decisions rely on logistic regression model, and
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biomedical data usually contain confidential informa-
tion about individuals [3] which should be treated care-
fully. Therefore, privacy and security of data are the
major concerns, especially when deploying the out-
source analysis tools.

There have been several researches on secure compu-
tation based on cryptographic primitives. Nikolaenko
et al. [4] presented a privacy preserving linear regres-
sion protocol on horizontally partitioned data using
Yao’s garbled circuits [5]. Multi-party computation
technique was also applied to privacy-preserving lo-
gistic regression [6, 7, 8]. However, this approach is
vulnerable when a party behaves dishonestly, and the
assumption for secret sharing is quite different from
that of outsourcing computation.

Homomorphic encryption (HE) is a cryptosystem
that allows us to perform certain arithmetic operations
on encrypted data and receive an encrypted result that
corresponds to the result of operations performed in
plaintext. Several papers already discussed ML with
HE techniques. Wu et al. [9] used Paillier cryptosys-
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tem [10] and approximated the logistic function using
polynomials, but it required an exponentially growing
computational cost in the degree of the approximation
polynomial. Aono et al. [11] and Xie et al. [12] used an
additive HE scheme to aggregate some intermediate
statistics. However, the scenario of Aono et al. relies
on the client to decrypt these intermediary statistics
and the method of Xie et al. requires expensive com-
putational cost to calculate the intermediate informa-
tion. The most related research of this paper is the
work of Kim et al. [13] which also used HE based ML.
However, the size of encrypted data and learning time
were highly dependent on the number of features, so
the performance for a large dataset was not practical
in terms of storage and computational cost.

Since 2011, the iDASH Privacy and Security Work-
shop has assembled specialists in privacy technology to
discuss issues that apply to biomedical data sharing,
as well as main stakeholders who provided an overview
of the main uses of the data, different laws and regu-
lations, and their own views on privacy. In addition, it
has began to hold annual competitions on the basis of
the workshop from 2014. The goal of this challenge is
to evaluate the performance of state-of-the-arts meth-
ods that ensures rigorous data confidentiality during
data analysis in a cloud environment.

In this paper, we provide a solution to the third track
of iDASH 2017 competition, which aims to develop
HE based secure solutions for building a ML model
(i.e., logistic regression) on encrypted data. We pro-
pose a general practical solution for HE based ML
that demonstrates good performance and low storage
costs. In practice, our output quality is comparable to
the one of an unencrypted learning case. As a basis, we
use the HE scheme for approximate arithmetic [14]. To
improve the performance, we apply several additional
techniques including a packing method, which reduce
the required storage space and optimize the computa-
tional time. We also adapt Nesterov’s accelerated gra-
dient [15] to increase the speed of convergence. As a
result, we could obtain a high-accuracy classifier using
only a small number of iterations.

We give an open-source implementation [16] to
demonstrate the performance of our HE based ML
method. With our packing method we can encrypt the
dataset with 1579 samples and 18 features using 39MB
of memory. The encrypted learning time is about six
minutes. We also demonstrate our implementation on
the datasets used in [13] to compare the results. For ex-
ample, the training of a logistic regression model took
about 3.6 minutes with the storage about 0.02GB com-
pared to 114 minutes and 0.69GB of Kim et al. [13]
when a dataset consists of 1253 samples, each of which
has 9 features.

Methods
Logistic Regression
Logistic regression or logit model is a ML model
used to predict the probability of occurrence of an
event by fitting data to a logistic curve [17]. It is
widely used in various fields including machine learn-
ing, biomedicine [18], genetics [19], and social sci-
ences [20].

Throughout this paper, we treat the case of a binary
dependent variable, represented by ±1. Learning data
consists of pairs (xi, yi) of a vector of co-variates xi =
(xi1, ..., xif ) ∈ Rf and a dependent variable yi ∈ {±1}.
Logistic regression aims to find an optimal β ∈ Rf+1

which maximizes the likelihood estimator

n∏
i=1

Pr(yi|xi) =

n∏
i=1

1

1 + exp(−yi(1,xi)Tβ)
,

or equivalently minimizes the loss function, defined as
the negative log-likelihood:

J(β) =
1

n

n∑
i=1

log(1 + exp(−zTi β))

where zi = yi · (1,xi) for i = 1, . . . , n.

Gradient Descent
Gradient Descent (GD) is a method for finding a lo-
cal extremum (minimum or maximum) of a function
by moving along gradients. To minimize the function
in the direction of the gradient, one-dimensional opti-
mization methods are used.

For logistic regression, the gradient of the cost func-
tion with respect to β is computed by

∇J(β) = − 1

n

n∑
i=1

σ(−zTi β) · zi

where σ(x) = 1
1+exp(−x) . Starting from an initial β0,

the gradient descent method at each step t updates
the regression parameters using the equation

β(t+1) ← β(t) +
αt
n

n∑
i=1

σ(−zTi β
(t)) · zi

where αt is a learning rate at step t.

Nesterov’s Accelerated Gradient
The method of GD can face a problem of zig-zagging
along a local optima and this behavior of the method
becomes typical if it increases the number of variables
of an objective function. Many GD optimization algo-
rithms are widely used to overcome this phenomenon.
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Momentum method, for example, dampens oscillation
using the accumulated exponential moving average for
the gradient of the loss function.

Nesterov’s accelerated gradient [15] is a slightly dif-
ferent variant of the momentum update. It uses mov-
ing average on the update vector and evaluates the
gradient at this “looked-ahead” position. It guaran-
tees a better rate of convergence O(1/t2) (vs. O(1/t) of
standard GD algorithm) after t steps theoretically, and
consistently works slightly better in practice. Starting
with a random initial v0 = β0, the updated equations
for Nesterov’s Accelerated GD are as follows:{

β(t+1) = v(t) − αt · 5J(v(t)),

v(t+1) = (1− γt) · β(t+1) + γt · β(t),
(1)

where 0 < γt < 1 is a moving average smoothing pa-
rameter.

Approximate Homomorphic Encryption
HE is a cryptographic scheme that allows us to carry
out operations on encrypted data without decryption.
Cheon et al. [14] presented a method to construct a HE
scheme for arithmetic of approximate numbers (called
HEAAN in what follows). The main idea is to treat an
encryption noise as part of error occurring during ap-
proximate computations. That is, an encryption ct of
message m ∈ R by a secret key sk for a ciphertext
modulus q will have a decryption structure of the form
〈ct, sk〉 = m+ e (mod q) for some small e.

The following is a simple description of HEAAN based
on the ring learning with errors problem. For a power-
of-two integer N , the cyclotomic polynomial ring of
dimension N is denoted by R = Z[X]/(XN + 1).
For a positive integer `, we denote R` = R/2`R =
Z2` [X]/(XN + 1) the residue ring of R modulo 2`.

• KeyGen(1λ).
- For an integer L that corresponds to the

largest ciphertext modulus level, given the
security parameter λ, output the ring dimen-
sion N which is a power of two.

- Set the small distributions χkey, χerr, χenc
over R for secret, error, and encryption, re-
spectively.

- Sample a secret s← χkey, a random a← RL
and an error e ← χerr. Set the secret key
as sk ← (1, s) and the public key as pk ←
(b, a) ∈ R2

L where b← −as+ e (mod 2L).
• KSGensk(s′). For s′ ∈ R, sample a random a′ ←
R2·L and an error e′ ← χerr. Output the switch-
ing key as swk ← (b′, a′) ∈ R2

2·L where b′ ←
−a′s+ e′ + 2Ls′ (mod 22·L).

- Set the evaluation key as evk← KSGensk(s2).

• Encpk(m). For m ∈ R, sample v ← χenc and

e0, e1 ← χerr. Output v · pk + (m + e0, e1)
(mod 2L).

• Decsk(ct). For ct = (c0, c1) ∈ R2
` , output c0 + c1 · s

(mod 2`).
• Add(ct1, ct2). For ct1, ct2 ∈ R2

` , output ctadd ←
ct1 + ct2 (mod 2`).

• CMultevk(ct; c). For ct ∈ R2
` and a ∈ R, output

ct′ ← c · ct (mod 2`).
• Multevk(ct1, ct2). For ct1 = (b1, a1), ct2 = (b2, a2) ∈
R2
` , let (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2)

(mod 2`). Output ctmult ← (d0, d1)+b2−L · d2 · evke
(mod 2`).

• ReScale(ct; p). For a ciphertext ct ∈ R2
` and an

integer p, output ct′ ← b2−p · cte (mod 2`−p).

For a power-of-two integer k ≤ N/2, HEAAN provides
a technique to pack k complex numbers in a single
polynomial using a variant of the complex canonical
embedding map φ : Ck → R. We restrict the plain-
text space as a vector of real numbers throughout this
paper. Moreover, we multiply a scale factor of 2p to
plaintexts before the rounding operation to maintain
their precision.

• Encode(w; p). For w ∈ Rk, output the polynomial
m← φ(2p ·w) ∈ R.

• Decode(m; p). For a plaintext m ∈ R, the en-
coding of an array consisting of a power of two
k ≤ N/2 messages, output the vector w ←
φ−1(m/2p) ∈ Rk.

The encoding/decoding techniques support the par-
allel computation over encryption, yielding a better
amortized timing. In addition, the HEAAN scheme pro-
vides the rotation operation on plaintext slots, i.e., it
enables us to securely obtain an encryption of the
shifted plaintext vector (wr, . . . , wk−1, w0, . . . , wr−1)
from an encryption of (w0, . . . , wk−1). It is necessary
to generate an additional public information rk, called
the rotation key. We denote the rotation operation as
follows.
• Rotaterk(ct; r). For the rotation keys rk, output

a ciphertext ct′ encrypting the rotated plaintext
vector of ct by r positions.

Refer [14] for the technical details and noise analysis.

Database Encoding
For an efficient computation, it is crucial to find a
good encoding method for the given database. The
HEAAN scheme supports the encryption of a plaintext
vector and the slot-wise operations over encryption.
However, our learning data is represented by a matrix
(zij)1≤i≤n,0≤j≤f . A recent work [13] used the column-
wise approach, i.e., a vector of specific feature data
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(zij)1≤i≤n is encrypted in a single ciphertext. Conse-
quently, this method required (f + 1) number of ci-
phertexts to encrypt the whole dataset.

In this subsection, we suggest a more efficient encod-
ing method to encrypt a matrix in a single ciphertext.
A training dataset consists of n samples zi ∈ Rf+1 for
1 ≤ i ≤ n, which can be represented as a matrix Z as
follows:

Z =


z10 z11 · · · z1f
z20 z21 · · · z1f
...

...
. . .

...
zn0 zn1 · · · znf

 .
For simplicity, we assume that n and (f+1) are power-
of-two integers satisfying log n+log(f+1) ≤ log(N/2).
Then we can pack the whole matrix in a single ci-
phertext in a row-by-row manner. Specifically, we will
identify this matrix with the k-dimensional vector
by (zij)1≤i≤n,0≤j≤f 7→ w = (w`)0≤`<n·(f+1) where
w` = zij such that ` = (f + 1)(i− 1) + j, that is,

Z 7→ w = (z10, . . . , z1f , z20, . . . , z2f , . . . , zn0, . . . , znf ).

In a general case, we can pad zeros to set the number
of samples and the dimension of a weight vector as
powers of two.

It is necessary to perform shifting operations of row
and column vectors for the evaluation of the GD algo-
rithm. In the rest of this subsection, we explain how to
perform these operations using the rotation algorithm
provided in the HEAAN scheme. As described above, the
algorithm Rotate(ct; r) can shift the encrypted vector
by r positions. In particular, this operation is useful
in our implementation when r = f + 1 or r = 1. For
the first case, a given matrix Z = (zij)1≤i≤n,0≤j≤f is
converted into the matrix

Z ′ =


z20 z21 · · · z2f
...

...
. . .

...
zn0 zn1 · · · znf
z10 z11 · · · z1f

 ,
while the latter case outputs the matrix

Z ′′ =


z11 · · · z1f z20
z21 · · · z2f z30
...

...
. . .

...
zn1 · · · znf z10


over encryption. The matrix Z ′ is obtained from Z by
shifting its row vectors and Z ′′ can be viewed as an
incomplete column shifting because of its last column.

Polynomial Approximation of the Sigmoid Function
One limitation of the existing HE cryptosystems is
that they only support polynomial arithmetic oper-
ations. The evaluation of the sigmoid function is an
obstacle for the implementation of the logistic regres-
sion since it cannot be expressed as a polynomial.

Kim et al. [13] used the least squares approach to
find a global polynomial approximation of the sigmoid
function. We adapt this approximation method and
consider the degree 3, 5, and 7 least squares polyno-
mials of the sigmoid function over the domain [−8, 8].

We observed that the inner product values zTi β
(t) in

our experimentations belong to this interval. For sim-
plicity, a least squares polynomial of σ(−x) will be de-

noted by g(x) so that we have g(zTi β
(t)) ≈ σ(−zTi β

(t))

when |zTi β
(t)| ≤ 8. The approximate polynomials g(x)

of degree 3, 5, and 7 are computed as follows:

g3(x) = 0.5− 1.20096 · (x/8) + 0.81562 · (x/8)3,

g5(x) = 0.5− 1.53048 · (x/8) + 2.3533056 · (x/8)3

−1.3511295 · (x/8)5,

g7(x) = 0.5− 1.73496 · (x/8) + 4.19407 · (x/8)3

−5.43402 · (x/8)5 + 2.50739 · (x/8)7.

A low-degree polynomial requires a smaller evaluation
depth while a high-degree polynomial has a better pre-
cision. The maximum errors between σ(−x) and the
least squares g3(x), g5(x), and g7(x) are approximately
0.114, 0.061 and 0.032, respectively.

Homomorphic Evaluation of the Gradient Descent
This section explains how to securely train the logistic
regression model using the HEAAN scheme. To be pre-
cise, we explicitly describe a full pipeline of the eval-
uation of the GD algorithm. We adapt the same as-
sumptions as in the previous section so that the whole
database can be encrypted in a single ciphertext.

First of all, a client encrypts the dataset and the
initial (random) weight vector β(0) and sends them to
the public cloud. The dataset is encoded to a matrix
Z of size n× (f + 1) and the weight vector is copied n
times to fill the plaintext slots. The plaintext matrices
of the resulting ciphertexts are described as follows:

ctz = Enc


z10 z11 · · · z1f
z20 z21 · · · z1f
...

...
. . .

...
zn0 zn1 · · · znf

 ,

ct
(0)
β = Enc


β
(0)
0 β

(0)
1 · · · β

(0)
f

β
(0)
0 β

(0)
1 · · · β

(0)
f

...
...

. . .
...

β
(0)
0 β

(0)
1 · · · β

(0)
f

 .
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As mentioned before, both Z and β(0) are scaled by a
factor of 2p before encryption to maintain the precision
of plaintexts. We skip to mention the scaling factor in
the rest of this section since every step will return a
ciphertext with the scaling factor of 2p.

The public server takes two ciphertexts ctz and ct
(t)
β

and evaluates the GD algorithm to find an optimal
modeling vector. The goal of each iteration is to up-
date the modeling vector β(t) using the gradient of loss
function:

β(t+1) ← β(t) +
αt
n

n∑
i=1

σ(−zTi β
(t)) · zi

where αt denotes the learning rate at the t-th iteration.
Each iteration consists of the following eight steps.

Step 1: For given two ciphertexts ctz and ct
(t)
β , com-

pute their multiplication and rescale it by p bits:

ct1 ← ReScale(Mult(ct
(t)
β , ctz); p).

The output ciphertext contains the values zij · β(t)
j in

its plaintext slots, i.e.,

ct1 = Enc


z10 · β(t)

0 z11 · β(t)
1 · · · z1f · β(t)

f

z20 · β(t)
0 z21 · β(t)

1 · · · z1f · β(t)
f

...
...

. . .
...

zn0 · β(t)
0 zn1 · β(t)

1 · · · znf · β(t)
f

 .

Step 2: To obtain the inner product zTi β
(t), the pub-

lic cloud aggregates the values of zijβ
(t)
j in the same

row. This step can be done by adapting the incomplete
column shifting operation.

One simple way is to repeat this operation (f + 1)
times, but the computational cost can be reduced
down to log(f + 1) by adding ct1 to its rotations re-
cursively:

ct1 ← Add(ct1, Rotate(ct1; 2j)),

for j = 0, 1, . . . , log(f + 1) − 1. Then the output ci-

phertext ct2 encrypts the inner product values zTi β
(t)

in the first column and some “garbage” values in the
other columns, denoted by ?, i.e.,

ct2 = Enc


zT1 β

(t) ? · · · ?

zT2 β
(t) ? · · · ?

...
...

. . .
...

zTnβ
(t) ? · · · ?

 .

Step 3: This step performs a constant multiplication
in order to annihilate the garbage values. It can be
obtained by computing the encoding polynomial c ←
Encode(C; pc) of the matrix

C =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 ,
using the scaling factor of 2pc for some integer pc. The
parameter pc is chosen as the bit precision of plaintexts
so it can be smaller than the parameter p.

Finally we multiply the polynomial c to the cipher-
text ct2 and rescale it by pc bits:

ct3 ← ReScale(CMult(ct2; c); pc).

The garbage values are multiplied with zero while one
can maintain the inner products in the plaintext slots.
Hence the output ciphertext ct3 encrypts the inner
product values in the first column and zeros in the
others:

ct3 = Enc


zT1 β

(t) 0 · · · 0

zT2 β
(t) 0 · · · 0

...
...

. . .
...

zTnβ
(t) 0 · · · 0

 .
Step 4: The goal of this step is to replicate the inner
product values to other columns. Similar to Step 2, it
can be done by adding the input ciphertext to its col-
umn shifting recursively, but in the opposite direction

ct3 ← Add(ct3, Rotate(ct3;−2j))

for j = 0, 1, . . . , log(f + 1)− 1. The output ciphertext
ct4 has the same inner product value in each row:

ct4 = Enc


zT1 β

(t) zT1 β
(t) · · · zT1 β

(t)

zT2 β
(t) zT2 β

(t) · · · zT2 β
(t)

...
...

. . .
...

zTnβ
(t) zTnβ

(t) · · · zTnβ
(t)

 .
Step 5: This step simply evaluates an approximating
polynomial of the sigmoid function, i.e., ct5 ← g(ct4)
for some g ∈ {g3, g5, g7}. The output ciphertext en-

crypts the values of g(zTi β
(t)) in its plaintext slots:

ct5 = Enc


g(zT1 β

(t)) · · · g(zT1 β
(t))

g(zT2 β
(t)) · · · g(zT2 β

(t))
...

. . .
...

g(zTnβ
(t)) · · · g(zTnβ

(t))

 .
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Step 6: The public cloud multiplies the ciphertext
ct5 with the encrypted dataset ctz and rescales the
resulting ciphertext by p bits:

ct6 ← ReScale(Mult(ct5, ctz); p).

The output ciphertext encrypts the n vectors g(zTi β
(t))·

zi in each row:

ct6 = Enc


g(zT1 β

(t)) · z10 · · · g(zT1 β
(t)) · z1f

g(zT2 β
(t)) · z20 · · · g(zT2 β

(t)) · z2f
...

. . .
...

g(zTnβ
(t)) · zn0 · · · g(zTnβ

(t)) · znf

 .

Step 7: This step aggregates the vectors g(zTi β
(t)) to

compute the gradient of the loss function. It is ob-
tained by recursively adding ct6 to its row shifting:

ct6 ← Add(ct6, Rotate(ct6; 2j))

for j = log(f+1), . . . , log(f+1)+log n−1. The output
ciphertext is

ct7 = Enc


∑
i g(zTi β

(t)) · zi0 · · ·
∑
i g(zTi β

(t)) · zif∑
i g(zTi β

(t)) · zi0 · · ·
∑
i g(zTi β

(t)) · zif
...

. . .
...∑

i g(zTi β
(t)) · zi0 · · ·

∑
i g(zTi β

(t)) · zif

 ,
as desired.
Step 8: For the learning rate αt, it uses the param-
eter pc to compute the scaled learning rate ∆(t) =
b2pc · αte. The public cloud updates β(t) using the ci-
phertext ct7 and the constant ∆(t):

ct8 ← ReScale(∆(t) · ct7; pc),

ct
(t+1)
β ← Add(ct

(t)
β , ct8).

Finally it returns a ciphertext encrypting the updated
modeling vector

ct
(t+1)
β = Enc


β
(t+1)
0 β

(t+1)
1 · · · β(t+1)

f

β
(t+1)
0 β

(t+1)
1 · · · β(t+1)

f
...

...
. . .

...

β
(t+1)
0 β

(t+1)
1 · · · β(t+1)

f

 .

where β
(t+1)
j = β

(t)
j + αt

n

∑
i g(zTi β

(t)) · zij .

Homomorphic Evaluation of Nesterov’s Accelerated
Gradient
The performance of leveled HE schemes highly de-
pends on the depth of a circuit to be evaluated. The

bottleneck of homomorphic evaluation of the GD algo-
rithm is that we need to repeat the update of weight
vector β(t) iteratively. Consequently, the total depth
grows linearly on the number of iterations and it
should be minimized for practical implementation.

For the homomorphic evaluation of Nesterov’s ac-
celerated gradient, a clients sends one more cipher-

text ct
(0)
v encrypting the initial vector v(0) to the pub-

lic cloud. Then the server uses an encryption ctz of

dataset Z to update two ciphertexts v(t) and ct
(t)
β at

each iteration. One can securely compute β(t+1) in the
same way as the previous section. Nesterov’s acceler-
ated gradient requires one more step to compute the
second equation of (1) and obtain an encryption of

v(t+1) from ct
(t)
β and ct

(t+1)
β .

Step 9: Let ∆
(t)
1 = b2pc · γte and let ∆

(t)
2 = 2pc−∆

(t)
1 .

It obtains the ciphertext ct
(t+1)
v by computing

ct(t+1)
v ← Add(∆

(t)
2 · ct

(t+1)
β ,∆

(t)
1 · ct

(t)
β ),

ct(t+1)
v ← ReScale(ct(t+1)

v ; pc).

Then the output ciphertext is

ct(t+1)
v = Enc


v
(t+1)
0 v

(t+1)
1 · · · v(t+1)

f

v
(t+1)
0 v

(t+1)
1 · · · v(t+1)

f
...

...
. . .

...

v
(t+1)
0 v

(t+1)
1 · · · v(t+1)

f

 ,

which encrypts v
(t+1)
j = (1 − γt) · β(t+1)

j + γt · β(t)
j in

the plaintext slots.

Results
In this section, we present parameter sets with exper-
imental results. Our implementation is based on the
HEAAN library [21] that implements the approximate
HE scheme of Cheon et al. [14]. The source code is
publicly available at github [16].

Parameters settings
We explain how to choose the parameter sets for the
homomorphic evaluation of the (Nesterov’s) GD algo-
rithm with security analysis. We start with the param-
eter L - the bitsize of a fresh ciphertext modulus. The
modulus of a ciphertext is reduced after the ReScale

operations and the evaluation of an approximate poly-
nomial g(x).

The ReScale procedures after homomorphic multi-
plications (step 1 and 6) reduce the ciphertext modu-
lus by p bits while the ReScale procedures after con-
stant multiplications (step 3 and 8) require pc bits of



Kim et al. Page 7 of 9

Table 1 Implementation results for iDASH dataset with 10-fold CV

Sample Feature
deg g

Iter Enc Learn
Storage Accuracy AUC

Num Num Num Time Time

1579 18
3 9 4s 7.94min 0.04GB 61.72% 0.677
5 7 4s 6.07min 0.04GB 62.87% 0.689
7 7 4s 7.01min 0.04GB 62.36% 0.689

Table 2 Implementation results for other datasets with 5-fold CV

Dataset
Sample Feature

Method deg g
Iter Enc Learn

Storage Accuracy AUC
Num Num Num Time Time

Edinburgh 1253 9
Ours 5 7 2s 3.6min 0.02GB 91.04% 0.958
[13] 3 25 12s 114min 0.69GB 86.03% 0.956
[13] 7 20 12s 114min 0.71GB 86.19% 0.954

lbw 189 9
Ours 5 7 2s 3.3min 0.02GB 69.19% 0.689
[13] 3 25 11s 99min 0.67GB 69.30% 0.665
[13] 7 20 11s 86min 0.70GB 69.29% 0.678

nhanes3 15649 15
Ours 5 7 14s 7.3min 0.16GB 79.22% 0.717
[13] 3 25 21s 235min 1.15GB 79.23% 0.732
[13] 7 20 21s 208min 1.17GB 79.23% 0.737

pcs 379 9
Ours 5 7 2s 3.5min 0.02GB 68.27% 0.740
[13] 3 25 11s 103min 0.68GB 68.85% 0.742
[13] 7 20 11s 97min 0.70GB 69.12% 0.750

uis 575 8
Ours 5 7 2s 3.5min 0.02GB 74.44% 0.603
[13] 3 25 10s 104min 0.61GB 74.43% 0.585
[13] 7 20 10s 96min 0.63GB 75.43% 0.617

modulus reduction. Note that the ciphertext modulus
remains the same for the step 9 for the Nesterov’s ac-
celerated gradient if we compute step 8 and 9 together
using some precomputed constants. We use a similar
method with a previous work for the evaluation of the
sigmoid function (see [13] for details); the ciphertext
modulus is reduced by (2p+ 3) bits for the evaluation
of g3(x), and (3p+ 3) bits for that of g5(x) and g7(x).
Therefore, we obtain the following lower bound on the
parameter L:

L =

{
IterNum · (3p+ 2pc + 3) + L0 g = g3,

IterNum · (4p+ 2pc + 3) + L0 g ∈ {g5, g7},

where IterNum is the number of iterations of the GD
algorithm and L0 denotes the bit size of the output
ciphertext modulus. The modulus of the output ci-
phertext should be larger than 2p in order to encrypt
the resulting weight vector and maintain its precision.
We take p = 30, pc = 20 and L0 = 35 in our imple-
mentation.

The dimension of a cyclotomic ring R is chosen as
N = 216 following the security estimator of Albrecht
et al. [22] for the learning with errors problem. In this
case, the bit size L of a fresh ciphertext modulus should
be bounded by 1284 to ensure the security level λ = 80
against known attacks. Hence we repeat IterNum = 9

iterations of GD algorithm g = g3, and IterNum = 7
iterations when g = g5 or g = g7.

The smoothing parameter γt is chosen in accordance
with [15]. The choice of proper GD learning rate pa-
rameter αt normally depends on the problem at hand.
Choosing too small αt leads to a slow convergence, and
choosing too large αt could lead to a divergence, or a
fluctuation near a local optima. It is often optimized
by a trial and error method, which we are not available
to perform. Under these conditions harmonic progres-
sion seems to be a good candidate and we choose a
learning rate αt = 10

t+1 in our implementation.

Implementation
All the experimentations were performed on a machine
with an Intel Xeon CPU E5-2620 v4 at 2.10 GHz pro-
cessor.

Task for the iDASH challenge. In genomic data pri-
vacy and security protection competition 2017, the
goal of Track 3 was to devise a weight vector to predict
the disease using the genotype and phenotype data
(Additional file 1: iDASH). This dataset consists of
1579 samples, each of which has 18 features and a co-
hort information (disease vs. healthy). Since we use
the ring dimension N = 216, we can only pack up to
N/2 = 215 dataset values in a single ciphertext but we
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have totally 1579 × 19 > 215 values to be packed. We
can overcome this issue by dividing the dataset into
two parts of sizes 1579 × 16 and 1579 × 3 and encod-
ing them separately into two ciphertexts. In general,
this method can be applied to the datasets with any
number of features: the dataset can be encrypted into
d(f + 1) · n · (N/2)−1e ciphertexts.

In order to estimate the validity of our method, we
utilized 10-fold cross-validation (CV) technique: it ran-
domly partitions the dataset into ten folds with ap-
proximately equal sizes, and uses every subset of 9
folds for training and the rest one for testing the model.
The performance of our solution including the average
running time per fold of 10-fold CV (encryption and
evaluation) and the storage (encrypted dataset) are
shown in Table 1. This table also provides the aver-
age accuracy and the AUC (Area Under the Receiver
Operating Characteristic Curve) which estimate the
quality of a binary classifier.

Comparison. We present some experimental results
to compare the performance of implementation to [13].
For a fair comparison, we use the same 5-fold CV
technique on five datasets - the Myocardial Infarction
dataset from Edinburgh [23] (Additional file 2: Edin-
burgh), Low Birth Weight Study (Additional file 3:
lbw), Nhanes III (Additional file 4: nhanes3), Prostate
Cancer Study (Additional file 5: pcs), and Umaru Im-
pact Study datasets (Additional file 6: uis) [24, 25, 26,
27]. All datasets have a single binary outcome variable.

All the experimental results are summarized in Ta-
ble 2. Our new packing method could reduce the stor-
age of ciphertexts and the use of Nesterov’s acceler-
ated gradient achieves much higher speed than the ap-
proach of [13]. For example, it took 3.6 minutes to
train a logistic regression model using the encrypted
Edinburgh dataset of size 0.02 GB, compared to 114
minutes and 0.69 GB of the previous work [13], while
achieving the good qualities of the output models.

Discussion
The rapid growth of computing power initiated the
study of more complicated ML algorithms in various
fields including biomedical data analysis [28, 29]. HE
system is a promising solution for the privacy issue,
but its efficiency in real applications remains as an
open question. It would be great if we could extend this
work to other ML algorithms such as deep learning.

One constraint in our approach is that the num-
ber of iterations of GD algorithm is limited depending
on the choice of HE parameter. In terms of asymp-
totic complexity, applying the bootstrapping method
of approximate HE scheme [30] to the GD algorithm
would achieve a linear computation cost on the itera-
tion number.

Conclusion
In the paper, we presented a solution to homomorphi-
cally evaluate the learning phase of logistic regression
model using the gradient descent algorithm and the
approximate HE scheme. Our solution demonstrates a
good performance and the quality of learning is compa-
rable to the one of an unencrypted case. Our encoding
method can be easily extended to a large-scale dataset,
which shows the practical potential of our approach.
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