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ABSTRACT
Homomorphic Encryption (HE) is a powerful cryptographic primi-

tive to address privacy and security issues in outsourcing computa-

tion on sensitive data to an untrusted computation environment.

Comparing to secure Multi-Party Computation (MPC), HE has ad-

vantages in supporting non-interactive operations and saving on

communication costs. However, it has not come up with an optimal

solution for modern learning frameworks, partially due to a lack of

efficient matrix computation mechanisms.

In this work, we present a practical solution to encrypt a matrix

homomorphically and perform arithmetic operations on encrypted

matrices. Our solution includes a novel matrix encoding method

and an efficient evaluation strategy for basic matrix operations such

as addition, multiplication, and transposition. We also explain how

to encrypt more than one matrix in a single ciphertext, yielding

better amortized performance.

Our solution is generic in the sense that it can be applied to

most of the existing HE schemes. It also achieves reasonable per-

formance for practical use; for example, our implementation takes

9.21 seconds to multiply two encrypted square matrices of order 64

and 2.56 seconds to transpose a square matrix of order 64.

Our secure matrix computation mechanism has a wide applica-

bility to our new framework E2DM, which stands for encrypted

data and encrypted model. To the best of our knowledge, this is

the first work that supports secure evaluation of the prediction

phase based on both encrypted data and encrypted model, whereas

previous work only supported applying a plain model to encrypted

data. As a benchmark, we report an experimental result to classify

handwritten images using convolutional neural networks (CNN).

Our implementation on the MNIST dataset takes 28.59 seconds to

compute ten likelihoods of 64 input images simultaneously, yielding

an amortized rate of 0.45 seconds per image.
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1 INTRODUCTION
Homomorphic Encryption (HE) is an encryption scheme that al-

lows for operations on encrypted inputs so that the decrypted

result matches the outcome for the corresponding operations on

the plaintext. This property makes it very attractive for secure out-

sourcing tasks, including financial model evaluation and genetic

testing, which can ensure the privacy and security of data com-

munication, storage, and computation [3, 46]. In biomedicine, it is

extremely attractive due to the privacy concerns about patients’

sensitive data [28, 47]. Recently deep neural network based models

have been demonstrated to achieve great success in a number of

health care applications [36], and a natural question is whether we

can outsource such learned models to a third party and evaluate

new samples in a secure manner?

There are several different scenarios depending on who owns

the data and who provides the model. Assuming a few different

roles including data owners (e.g. hospital, institution or individu-

als), cloud computing service providers (e.g. Amazon, Google, or

Microsoft), and machine learning model providers (e.g. researchers

and companies), we can imagine the following situations: (1) the

data owner trains a model and makes it available on a computing

service provider to be used to make predictions on encrypted inputs

from other data owners; (2) model providers encrypt their trained

classifier models and upload them to a cloud service provider to

make predictions on encrypted inputs from various data owners;

and (3) a cloud service provider trains a model on encrypted data

from some data owners and uses the encrypted trained model to

make predictions on new encrypted inputs. The first scenario has

been previously studied in CryptoNets [24] and subsequent follow-

up work [7, 10]. The second scenario was considered by Makri et

al. [35] based on Multi-Party Computation (MPC) using polynomial

kernel support vector machine classification. However, the second

and third scenarios with an HE system have not been studied yet.
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a0 a1 a2

a3 a4 a5

a6 a7 a8

·

b0 b1 b2

b3 b4 b5

b6 b7 b8

=

a0 a1 a2

a4 a5 a3

a8 a6 a7

⊙

b0 b4 b8

b3 b7 b2

b6 b1 b5

+

a1 a2 a0

a5 a3 a4

a6 a7 a8

⊙

b3 b7 b2

b6 b1 b5

b0 b4 b8

+

a2 a0 a1

a3 a4 a5

a7 a8 a6

⊙

b6 b1 b5

b0 b4 b8

b3 b7 b2

Figure 1: Our matrix multiplication algorithm with d = 3

In particular, classification tasks for these scenarios rely heavily on

efficiency of secure matrix computation on encrypted inputs.

1.1 Our Contribution
In this paper, we introduce a generic method to perform arithmetic

operations on encrypted matrices using an HE system. Our solution

requiresO(d) homomorphic operations to compute a product of two

encrypted matrices of size d ×d , compared toO(d2) of the previous

best method. We extend basic matrix arithmetic to some advanced

operations: transposition and rectangular matrix multiplication. We

also describe how to encrypt multiple matrices in a single ciphertext,

yielding a better amortized performance per matrix.

We apply our matrix computation mechanism to a new frame-

work E2DM, which takes encrypted data and encrypted machine

learning model to make predictions securely. This is the first HE-

based solution that can be applied to the prediction phase of the

second and third scenarios described above. As a benchmark of this

framework, we implemented an evaluation of convolutional neural
networks (CNN) model on the MNIST dataset [33] to compute ten

likelihoods of handwritten images.

1.2 Technical Details
After Gentry’s first construction of a fully HE scheme [22], there

have been several attempts to improve efficiency and flexibility

of HE systems. For example, the ciphertext packing technique al-

lows multiple values to be encrypted in a single ciphertext, thereby

performing parallel computation on encrypted vectors in a Sin-

gle Instruction Multiple Data (SIMD) manner. In the current lit-

erature, most of practical HE schemes [8, 9, 14, 19] support their

own packing methods to achieve better amortized complexity of

homomorphic operations. Besides component-wise addition and

multiplication on plaintext vectors, these schemes provide addi-

tional functionalities such as scalar multiplication and slot rotation.

In particular, permutations on plaintext slots enable us to interact

with values located in different plaintext slots.

A naive solution for secure multiplication between two matrices

of size d ×d is to use d2
distinct ciphertexts to represent each input

matrix (one ciphertext per one matrix entry) and apply pure SIMD

operations (addition and multiplication) on encrypted vectors. This

method consumes one level for homomorphic multiplication, but

it takes O(d3) multiplications. Another approach is to consider a

matrix multiplication as a series of matrix-vector multiplications.

Halevi and Shoup [25] introduced a matrix encoding method based

on its diagonal decomposition, putting the matrix in diagonal order

and mapping each of them to a single ciphertext. So it requires d
ciphertexts to represent the matrix and the matrix-vector multipli-

cation can be computed using O(d) rotations and multiplications.

Therefore, the matrix multiplication takes O(d2) complexity and

has a depth of a single multiplication.

We propose an efficient method to perform matrix operations by

combining HE-friendly operations on packed ciphertexts such as

SIMD arithmetics, scalar multiplication, and slot rotation. We first

define a simple encoding map that identifies an arbitrary matrix of

size d×d with a vector of dimension n = d2
having the same entries.

Let ⊙ denote the component-wise product between matrices. Then

matrix multiplication can be expressed as A · B =
∑d−1

i=0
Ai ⊙ Bi

for some matrices Ai (resp. Bi ) obtained from A (resp. B) by taking

specific permutations. Figure 1 describes this equality for the case

of d = 3. We remark that the initial matrixA0 (resp. B0) can be com-

puted withO(d) rotations, and that for any 1 ≤ i < d the permuted

matrix Ai (resp. Bi ) can be obtained by O(1) rotations from the

initial matrix. Thus the total computational complexity is bounded

by O(d) rotations and multiplications. We refer to Table 1 for com-

parison of our method with prior work in terms of the number of

input ciphertexts for a single matrix, complexity, and the required

depth for implementation. We denote homomorphic multiplication

and constant multiplication by Mult and CMult, respectively.

Methodology

Number of

Complexity Required depth

ciphertexts

Naive method d2 O(d3) 1 Mult

Halevi-Shoup [25] d O(d2) 1 Mult

Ours 1 O(d) 1 Mult + 2 CMult

Table 1: Comparison of secure d-dimensional matrix multi-
plication algorithms

Our basic solution is based on the assumption that a ciphertext

can encrypt d2
plaintext slots, but it can be extended to support

matrix computation of an arbitrary size. When a ciphertext has

more than d2
plaintext slots, for example, we can encrypt multiple

matrices in a single ciphertext and carry out matrix operations in

parallel. On the other hand, if a matrix is too large to be encoded

into one ciphertext, one can partition it into several sub-matrices

and encrypt them individually. An arithmetic operation over large

matrices can be expressed using block-wise operations, and the

computation on the sub-matrices can be securely done using our

basic matrix algorithms. We will use this approach to evaluate an

encrypted neural networks model on encrypted data.

Our implementation is publicly available at https://github.com/K-
miran/HEMat. It is based on an HE scheme of Cheon et al. [14],

which is optimized in computation over the real numbers. For

example, it took 9.21 seconds to securely compute the product

of two matrices of size 64 × 64 and 2.56 seconds to transpose a

single matrix of size 64 × 64. For the evaluation of an encrypted

CNN model, we adapted a similar network topology to CryptoNets:

one convolution layer and two fully connected (FC) layers with
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square activation function. This model is obtained from the keras
library [15] by training 60,000 images of the MNIST dataset, and

used for the classification of handwriting images of size 28 × 28. It

took 28.59 seconds to compute ten likelihoods of encrypted 64 input

images using the encrypted CNN model, yielding an amortized

rate of 0.45 seconds per image. This model achieves a prediction

accuracy of 98.1% on the test set.

2 PRELIMINARIES
The binary logarithm will be simply denoted by log(·). We denote

vectors in bold, e.g. a, and every vector in this paper is a row vector.

For a d1 × d matrix A1 and a d2 × d matrix A2, (A1;A2) denotes

the (d1 + d2) × d matrix obtained by concatenating two matrices

in a vertical direction. If two matrices A1 and A2 have the same

number of rows, (A1 |A2) denotes a matrix formed by horizontal

concatenation. We let λ denote the security parameter throughout

the paper: all known valid attacks against the cryptographic scheme

under scope should take Ω(2λ) bit operations.

2.1 Homomorphic Encryption
HE is a cryptographic primitive that allows us to compute on en-

crypted data without decryption and generate an encrypted result

which matches that of operations on plaintext [6, 9, 14, 19]. So it

enables us to securely outsource computation to a public cloud.

This technology has great potentials in many real-world appli-

cations such as statistical testing, machine learning, and neural

networks [24, 30, 31, 40].

LetM and C denote the spaces of plaintexts and ciphertexts, re-

spectively. AnHE schemeΠ = (KeyGen, Enc, Dec, Eval) is a quadru-
ple of algorithms that proceeds as follows:

• KeyGen(1λ). Given the security parameter λ, this algorithm
outputs a public key pk, a public evaluation key evk and a

secret key sk.
• Encpk(m). Using the public key pk, the encryption algorithm

encrypts a message m ∈ M into a ciphertext ct ∈ C.
• Decsk(ct). For the secret key sk and a ciphertext ct, the de-
cryption algorithm returns a message m ∈ M.

• Evalevk(f ; ct1, . . . , ctk ). Using the evaluation key evk, for a
circuit f :Mk →M and a tuple of ciphertexts (ct1, . . . , ctk ),
the evaluation algorithm outputs a ciphertext ct′ ∈ C.

An HE scheme Π is called correct if the following statements are

satisfied with an overwhelming probability:

(1) Decsk(ct) = m for any m ∈ M and ct← Encpk(m).
(2) Decsk(ct′) = f (m1, . . . ,mk )with an overwhelming probabil-

ity if ct′ ← Evalevk(f ; ct1, . . . , ctk ) for an arithmetic circuit

f : Mk → M and for some ciphertexts ct1, . . . , ctk ∈ C
such that Decsk(cti ) = mi .

An HE system can securely evaluate an arithmetic circuit f con-

sisting of addition and multiplication gates. Throughout this paper,

we denote by Add(ct1, ct2) and Multevk(ct1, ct2) the homomorphic

addition and multiplication between two ciphertexts ct1 and ct2,
respectively. In addition, we let CMultevk(ct; u) denote the multipli-

cation of ct with a scalar u ∈ M. For simplicity, we will omit the

subscript of the algorithms when it is clear from the context.

2.2 Ciphertext Packing Technique
Ciphertext packing technique allows us to encrypt multiple val-

ues into a single ciphertext and perform computation in a SIMD

manner. After Smart and Vercauteren [45] first introduced a pack-

ing technique based on polynomial-CRT, it has been one of the

most important features of HE systems. This method represents

a native plaintext spaceM as a set of n-dimensional vectors in

Rn over a ring R using appropriate encoding/decoding methods

(each factor is called a plaintext slot). One can encode and encrypt

an element of Rn into a ciphertext, and perform component-wise

arithmetic operations over the plaintext slots at once. It enables us

to reduce the expansion rate and parallelize the computation, thus

achieving better performance in terms of amortized space and time

complexity.

However, the ciphertext packing technique has a limitation that

it is not easy to handle a circuit with some inputs in different plain-

text slots. To overcome this problem, there have been proposed

some methods to move data in the slots over encryption. For ex-

ample, some HE schemes [14, 23] based on the ring learning with

errors (RLWE) assumption exploit the structure of Galois group to

implement the rotation operation on plaintext slots. That is, such

HE schemes include the rotation algorithm, denoted by Rot(ct; ℓ),
which transforms an encryption ct of m = (m0, . . . ,mn−1) ∈ M =

Rn into an encryption of ρ(m; ℓ) := (mℓ , . . . ,mn−1,m0, . . . ,mℓ−1
).

Note that ℓ can be either positive or negative, and a rotation by

(−ℓ) is the same as a rotation by (n − ℓ).

2.3 Linear Transformations
Halevi and Shoup [25] introduced a method to evaluate an arbitrary

linear transformation on encrypted vectors. In general, an arbitrary

linear transformation L : Rn → Rn over plaintext vectors can be

represented as L : m 7→ U ·m for some matrix U ∈ Rn×n . We can

express the matrix-vector multiplication by combining rotation and

constant multiplication operations.

Specifically, for 0 ≤ ℓ < n, we define the ℓ-th diagonal vector of
U by uℓ = (U0, ℓ ,U1, ℓ+1

, . . . ,Un−ℓ−1,n−1
,Un−ℓ,0, . . . ,Un−1, ℓ−1

) ∈

Rn . Then we have

U ·m =
∑

0≤ℓ<n

(uℓ ⊙ ρ(m; ℓ)) (1)

where ⊙ denotes the component-wise multiplication between vec-

tors. Given a matrixU ∈ Rn×n and an encryption ct of the vectorm,

Algorithm 1 describes how to compute a ciphertext of the desired

vectorU ·m.

Algorithm 1 Homomorphic linear transformation

procedure LinTrans(ct;U )
1: ct′ ← CMult(ct; u0)

2: for ℓ = 1 to n − 1 do
3: ct′ ← Add(ct′, CMult(Rot(ct; ℓ); uℓ))
4: end for
5: return ct′

As shown in Algorithm 1, the computational cost of matrix-

vector multiplication is about n additions, constant multiplications,

and rotations. Note that rotation operation needs to perform a
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key-switching operation and thus is comparably expensive than

the other two operations. So we can say that the complexity is

asymptotically O(n) rotations. It can be reduced when the number

of nonzero diagonal vectors of U is relatively small.

3 SECURE MATRIX MULTIPLICATION VIA
HOMOMORPHIC ENCRYPTION

In this section, we propose a simple encoding method to convert

a matrix into a plaintext vector in a SIMD environment. Based on

this encoding method, we devise an efficient algorithm to carry out

basic matrix operations over encryption.

3.1 Permutations for Matrix Multiplication
We propose an HE-friendly expression of the matrix multiplication

operation. For a d × d square matrix A = (Ai, j )0≤i, j<d , we first

define useful permutations σ , τ , ϕ, and ψ on the set Rd×d . For

simplicity, we identify Z∩ [0,d) as a representative of Zd and write

[i]d to denote the reduction of an integer i modulo d into that

interval. All the indexes will be considered as integers modulo d .

• σ (A)i, j = Ai,i+j .
• τ (A)i, j = Ai+j, j .
• ϕ(A)i, j = Ai, j+1.

• ψ (A)i, j = Ai+1, j .

Note that ϕ andψ represent the column and row shifting functions,

respectively. Then for two square matrices A and B of order d , we
can express their matrix product AB as follows:

A · B =
d−1∑
k=0

(
ϕk ◦ σ (A)

)
⊙

(
ψk ◦ τ (B)

)
, (2)

where ⊙ denotes the component-wise multiplication between ma-

trices. The correctness is shown in the following equality by com-

puting the matrix component of the index (i, j):

d−1∑
k=0

(
ϕk ◦ σ (A)

)
i, j
·

(
ψk ◦ τ (B)

)
i, j
=

d−1∑
k=0

σ (A)i, j+k · τ (B)i+k, j

=

d−1∑
k=0

Ai,i+j+k · Bi+j+k, j

=

d−1∑
k=0

Ai,k · Bk, j

= (A · B)i, j .

Since Equation (2) consists of permutations on matrix entries and

the Hadamard multiplication operations, we can efficiently evaluate

it using an HE system with ciphertext packing method.

3.2 Matrix Encoding Method
We propose a row ordering encoding map to transform a vector

of dimension n = d2
into a matrix in Rd×d . For a vector a =

(ak )0≤k<n , we define the encoding map ι : Rn → Rd×d by

ι : a 7→ A = (ad ·i+j )0≤i, j<d ,

i.e., a is the concatenation of row vectors of A. It is clear that ι(·) is
an isomorphism between additive groups, which implies that matrix

addition can be securely computed using homomorphic addition

in a SIMD manner. In addition, one can perform multiplication

by scalars by adapting a constant multiplication of an HE scheme.

Throughout this paper, we identify two spaces Rn and Rd×d with

respect to the ι(·), so a ciphertext will be called an encryption of A
if it encrypts the plaintext vector a = ι−1(A).

3.3 Matrix Multiplication on Packed
Ciphertexts

An arbitrary permutation operation on Rd×d can be understood

as a linear transformation L : Rn → Rn such that n = d2
. In

general, its matrix representation U ∈ {0, 1}n×n ⊆ Rn×n has n
number of nonzero diagonal vectors. So if we directly evaluate the

permutations A 7→ ϕk ◦ σ (A) and B 7→ ψk ◦ τ (B) for 1 ≤ k < d ,
each of them requiresO(d2) homomorphic operations and thus the

total complexity is O(d3). We provide an efficient algorithm to per-

form the matrix multiplication on packed ciphertexts by combining

Equation (2) and our matrix encoding map.

3.3.1 Tweaks of Permutations. We focus on the following four

permutations σ , τ , ϕ, and ψ described above. We let U σ
, U τ

, V ,
andW denote the matrix representations corresponding to these

permutations, respectively. Firstly, the matrix representations U σ

andU τ
of σ and τ are expressed as follows:

U σ
d ·i+j, ℓ =

{
1 if ℓ = d · i + [i + j]d ;

0 otherwise;

U τ
d ·i+j, ℓ =

{
1 if ℓ = d · [i + j]d + j;

0 otherwise,

for 0 ≤ i, j < d and 0 ≤ ℓ < d2
. Similarly, for 1 ≤ k < d , the matrix

representations of ϕk andψk
can be computed as follows:

V k
d ·i+j, ℓ =

{
1 if ℓ = d · i + [j + k]d ;

0 otherwise;

W k
d ·i+j, ℓ =

{
1 if ℓ = d · [i + k]d + j;

0 otherwise,

for 0 ≤ i, j < d and 0 ≤ ℓ < d2
.

As described in Equation (1), we employ the diagonal decom-

position of the matrix representations for multiplications with en-

crypted vectors. Let us count the number of diagonal vectors to

estimate the complexity. We use the same notation uℓ to write the

ℓ-th diagonal vector of a matrixU . For simplicity, we identify ud2−ℓ
with u−ℓ . The matrixU σ

has exactly (2d − 1) number of nonzero

diagonal vectors, denoted by uσk for k ∈ Z ∩ (−d,d). The ℓ-th di-

agonal vector of U τ
is nonzero if and only if ℓ is divisible by the

integer d , soU τ
has d nonzero diagonal vectors. For any 1 ≤ k < d ,

the matrixV k
has two nonzero diagonal vectors vk and vk−d . Sim-

ilarly, the matrixW k
has the only nonzero diagonal vector wd ·k .

Therefore, homomorphic evaluations of the permutations σ and τ

require O(d) rotations while it takes O(1) rotations to computeψk

or ϕk for any 1 ≤ k < d .
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3.3.2 Homomorphic Matrix Multiplication. Suppose that we are
given two ciphertexts ct.A and ct.B that encrypt matrices A and B
of size d × d , respectively. In the following, we describe an efficient

evaluation strategy for homomorphic matrix multiplication.

Step 1-1: This step performs the linear transformation U σ
on the

input ciphertext ct.A. Asmentioned above, thematrixU σ
is a sparse

matrix with (2d − 1) number of nonzero diagonal vectors uσk for

k ∈ Z ∩ (−d,d), so we can represent the linear transformation as

U σ · a =
∑

−d<k<d

(uσk ⊙ ρ(a;k)) (3)

where a = ι−1(A) ∈ Rn is the vector representation of A. If k ≥ 0,

the k-th diagonal vector is computed by

uσk [ℓ] =

{
1 if 0 ≤ ℓ − d · k < (d − k);

0 otherwise,

where uσk [ℓ] denotes the ℓ-th component of uσk . In the other cases

k < 0, it is computed by

uσk [ℓ] =

{
1 if − k ≤ ℓ − (d + k) · d < d ;

0 otherwise.

Then Equation (3) can be securely computed as∑
−d<k<d

CMult
(
Rot(ct.A;k); uσk

)
,

resulting the encryption of the plaintext vector U σ · a, denoted by

ct.A(0). Thus, the computational cost is about 2d additions, constant

multiplications, and rotations.

Step 1-2: This step is to evaluate the linear transformation U τ
on

the input ciphertext ct.B. As described above, the matrix U τ
has

d nonzero diagonal vectors so we can express this matrix-vector

multiplication as

U τ · b =
∑

0≤k<d

(uτd ·k ⊙ ρ(b;d · k)), (4)

where b = ι−1(B) and uτd ·k is the (d · k)-th diagonal vector of the

matrixU τ
. We note that for any 0 ≤ k < d , the vector uτd ·k contains

one in the (k + d · i)-th component for 0 ≤ i < d and zeros in all

the other entries. Then Equation (4) can be securely computed as∑
0≤k<d

CMult
(
Rot(ct.B;d · k); uτd ·k

)
,

resulting the encryption of the plaintext vector U τ · b, denoted by

ct.B(0). The complexity of this procedure is roughly half of the Step

1-1: d additions, constant multiplications, and rotations.

Step 2: This step securely computes the column and row shifting

operations of σ (A) and τ (B), respectively. For 1 ≤ k < d , the column

shifting matrix V k
has two nonzero diagonal vectors vk and vk−d

that are computed by

vk [ℓ] =

{
1 if 0 ≤ [ℓ]d < (d − k);

0 otherwise;

vk−d [ℓ] =

{
1 if (d − k) ≤ [ℓ]d < d ;

0 otherwise.

Then we get an encryption ct.A(k ) of the matrixϕk ◦σ (A) by adding

two ciphertexts CMult(Rot(ct.A(0);k); vk ) and CMult(Rot(ct.A(0);k−
d); vk−d ). In the case of the row shifting permutation, the corre-

sponding matrixW k
has exactly one nonzero diagonal vectorwd ·k

whose entries are all one. Thus we can obtain an encryption of

the matrix ψk ◦ τ (B) by computing ct.B(k ) ← Rot(ct.B(0);d · k).
The computational cost of this procedure is about d additions, 2d
constant multiplications, and 3d rotations.

Step 3: This step computes the Hadamard multiplication between

the ciphertexts ct.A(k) and ct.B(k )for 0 ≤ k < d , and finally aggre-

gates all the resulting ciphertexts. As a result, we get an encryption

ct.AB of the matrix AB. The running time of this step is d homo-

morphic multiplications and additions.

In summary, we can perform the homomorphic matrix multipli-

cation operation as described in Algorithm 2.

Algorithm 2 Homomorphic matrix multiplication

procedure HE-MatMult(ct.A, ct.B)

[Step 1-1]:
1: ct.A(0) ← LinTrans(ct.A;U σ )

[Step 1-2]:
2: ct.B(0) ← LinTrans(ct.B;U τ )

[Step 2]:
3: for k = 1 to d − 1 do
4: ct.A(k ) ← LinTrans(ct.A(0);V k )

5: ct.B(k ) ← LinTrans(ct.B(0);W k )

6: end for

[Step 3]:
7: ct.AB ← Mult(ct.A(0), ct.B(0))
8: for k = 1 to d − 1 do
9: ct.AB ← Add(ct.AB, Mult(ct.A(k), ct.B(k )))
10: end for
11: return ct.AB

3.3.3 Further Improvements. This implementation of matrix multi-

plication takes about 5d additions, 5d constant multiplications, 6d
rotations, and d multiplications. The complexity of Steps 1-1 and

1-2 can be reduced by applying the idea of baby-step/giant-step

algorithm. Given an integer k ∈ (−d,d), we can write k =
√
d · i + j

for some −
√
d < i <

√
d and 0 ≤ j <

√
d . It follows from [26, 27]

that Equation (3) can be expressed as

U σ · a =
∑

−
√
d<i<

√
d

0≤j<
√
d

(
uσ√

d ·i+j
⊙ ρ(a;

√
d · i + j)

)

=
∑

−
√
d<i<

√
d

ρ
©­­«

∑
0≤j<

√
d

ai, j ;
√
d · i

ª®®¬
where ai, j = ρ(uσ√

d ·i+j
;−
√
d · i) ⊙ ρ(a; j). We first compute encryp-

tions of baby-step rotations ρ(a; j) for 0 ≤ j <
√
d . We use them to
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compute the ciphertexts of ai, j ’s using only constant multiplica-

tions. After that, we perform

√
d additions,

√
d constant multipli-

cations, and a single rotation for each i . In total, Step 1-1 can be

homomorphically evaluated with 2d additions, 2d constant multi-

plications, and 3

√
d rotations. Step 1-2 can be computed in a similar

way using d additions, d constant multiplications, and 2

√
d rota-

tions.

On the other hand, we can further reduce the number of constant

multiplications in Step 2 by leveraging two-input multiplexers. The

sum of ρ(vk ;−k) and ρ(vk−d ;d − k) generates a plaintext vector
that has 1’s in all the slots, which implies that

CMult(Rot(ct.A(0);k − d); vk−d )

= Rot(CMult(ct.A(0); ρ(vk−d ;d − k));k − d)

= Rot(ct.A(0) − CMult(ct.A(0); ρ(vk ,−k));k − d).

For each 1 ≤ k < d , we compute CMult(ct.A(0); ρ(vk ,−k)). Then,
using the fact that CMult(Rot(ct.A(0);k); vk ) = Rot(CMult(ct.A(0);
ρ(vk ,−k));k), we obtain the desired ciphertext ct.A(k) with addi-

tion and rotation operations.

Table 2 summarizes the complexity and the required depth of

each step of Algorithm 2 with the proposed optimization tech-

niques.

Step Add CMult Rot Mult Depth

1-1 2d 2d 3

√
d -

1 CMult
1-2 d d 2

√
d -

2 2d d 3d - 1 CMult

3 d - - d 1 Mult

Total 6d 4d 3d + 5

√
d d

1 Mult

+2 CMult

Table 2: Complexity and required depth of Algorithm 2

4 ADVANCED HOMOMORPHIC MATRIX
COMPUTATIONS

In this section, we introduce a method to transpose a matrix over

an HE system. We also present a faster rectangular matrix multipli-

cation by employing the ideas from Algorithm 2. We can further

extend our algorithms to parallel matrix computation without addi-

tional cost.

4.1 Matrix Transposition on Packed
Ciphertexts

Let U t
be the matrix representation of the transpose map A 7→ At

on Rd×d � Rn . For 0 ≤ i, j < d , its entries are given by

U t
d ·i+j,k =

{
1 if k = d · j + i;

0 otherwise.

The k-th diagonal vector ofU t
is nonzero if and only if k = (d−1) ·i

for some i ∈ Z ∩ (−d,d), so the matrixU t
is a sparse matrix with

(2d − 1) nonzero diagonal vectors. We can represent this linear

transformation as

U t · a =
∑

−d<i<d

(t(d−1)·i ⊙ ρ(a; (d − 1) · i))

where t(d−1)·i denotes the nonzero diagonal vector ofU t
. The ℓ-th

component of the vector t(d−1)·i is computed by

t(d−1)·i [ℓ] =

{
1 if ℓ − i = (d + 1) · j, 0 ≤ j < d − i;

0 otherwise,

if i ≥ 0, or

t(d−1)·i [ℓ] =

{
1 if ℓ + i = (d + 1) · j, 0 ≤ j < d + i;

0 otherwise,

if i < 0. The total computational cost is about 2d rotations and the

baby-step/giant-step approach can be used to reduce the complex-

ity; the number of automorphism can be reduced down to 3

√
d .

4.2 Rectangular Matrix Multiplication
In this section, we design an efficient algorithm for rectangular

matrix multiplication such as Rℓ×d × Rd×d → Rℓ×d or Rd×d ×

Rd×ℓ → Rd×ℓ . For convenience, let us consider the former case

that A has a smaller number of rows than columns (i.e., ℓ < d). A
naive solution is to generate a square matrix by padding zeros in

the bottom of the matrix A and perform the homomorphic matrix

multiplication algorithm in Section 3.3, resulting in running time

of O(d) rotations and multiplications. However, we can further

optimize the complexity by manipulating its matrix multiplication

representation using a special property of permutations described

in Section 3.1.

4.2.1 Refinements of Rectangular Matrix Multiplication. Suppose
that we are given an ℓ × d matrix A and a d × d matrix B such that

ℓ divides d . Since σ and ϕ are defined as row-wise operations, the

restrictions to the rectangular matrix A are well-defined permu-

tations on A. By abuse of notation, we use the same symbols σ
and ϕ to denote the restrictions. We also use Cℓ1:ℓ2

to denote the

(ℓ2 − ℓ1) ×d submatrix ofC formed by extracting from ℓ1-th row to

the (ℓ2 − 1)-th row of C . Then their matrix product AB has shape

ℓ × d and it can be expressed as follows:

A · B =
∑

0≤k<d

(ϕk ◦ σ (A)) ⊙
(
(ψk ◦ τ (B))

0:ℓ

)
=

∑
0≤i<ℓ

∑
0≤j<d/ℓ

(ϕ j ·ℓ+i ◦ σ (A)) ⊙
(
(ψ j ·ℓ+i ◦ τ (B))

0:ℓ

)
.

Our key observation is the following lemma, which gives an idea

of a faster rectangular matrix multiplication algorithm.

Lemma 4.1. Two permutations σ and ϕ are commutative. In gen-
eral, we have ϕk ◦ σ = σ ◦ ϕk for k > 0. Similarly, we obtain
ψk ◦ τ = τ ◦ψk for k > 0.
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Now let us define a d × d matrix Ā containing (d/ℓ) copies of A
in a vertical direction (i.e., Ā = (A; . . . ;A)). Lemma 4.1 implies that

(ϕi ◦ σ (Ā))j ·ℓ:(j+1)·ℓ = ϕ
i ◦ (σ (Ā)j ·ℓ:(j+1)·ℓ)

= ϕi ◦ σ ◦ ϕ j ·ℓ(A)

= ϕ j ·ℓ+i ◦ σ (A).

Similarly, using the commutative property of τ andψ , it follows

(ψ i ◦ τ (B))j ·ℓ:(j+1)·ℓ = (ψ
j ·ℓ+i ◦ τ (B))

0:ℓ .

Therefore, the matrix product AB is written as follows:

A · B =
∑

0≤j<d/ℓ

( ∑
0≤i<ℓ

(ϕi ◦ σ (Ā)) ⊙ (ψ i ◦ τ (B))

)
j ·ℓ:(j+1)·ℓ

4.2.2 Homomorphic Rectangular Matrix Multiplication. Suppose
that we are given two ciphertexts ct.Ā and ct.B that encrypt matri-

ces Ā and B, respectively. We first apply the baby-step/giant-step

algorithm to generate the encryptions of σ (Ā) and τ (B) as in Section

3.3.3. Next, we can securely compute

∑ℓ−1

i=0
(ϕi ◦ σ (Ā)) ⊙ (ψ i ◦ τ (B))

in a similar way to Algorithm 2, say the output is ct.ĀB. Finally,
we perform aggregation and rotation operations to get the final

result:

∑d/ℓ−1

j=0
Rot(ct.ĀB; j · ℓ · d). This step can be evaluated using

a repeated doubling approach, yielding a running time of log(d/ℓ)
additions and rotations. See Algorithm 3 for an explicit description

of homomorphic rectangular matrix multiplication.

Algorithm 3 Homomorphic rectangular matrix multiplication

procedure HE-RMatMult(ct.Ā, ct.B)

[Step 1]:
1: ct.A(0) ← LinTrans(ct.Ā;U σ )

2: ct.B(0) ← LinTrans(ct.B;U τ )

[Step 2]:
3: for k = 1 to ℓ − 1 do
4: ct.A(k ) ← LinTrans(ct.A(0);V k )

5: ct.B(k ) ← LinTrans(ct.B(0);W k )

6: end for

[Step 3]:
7: ct.ĀB ← Mult(ct.A(0), ct.B(0))
8: for k = 1 to ℓ − 1 do
9: ct.ĀB ← Add(ct.ĀB, Mult(ct.A(k ), ct.B(k )))
10: end for

[Step 4]:
11: ct.AB ← ct.ĀB
12: for k = 0 to log(d/ℓ) − 1 do
13: ct.AB ← Add(ct.AB, Rot(ct.AB; ℓ · d · 2k ))
14: end for
15: return ct.AB

Table 3 summarizes the total complexity of Algorithm 3. Even

though we need additional computation for Step 4, we can reduce

the complexities of Step 2 and 3 to O(ℓ) rotations and ℓ multiplica-

tions, respectively. We also note that the final output ct.AB encrypts

a d ×d matrix containing (d/ℓ) copies of the desired matrix product

AB in a vertical direction.

Step Add CMult Rot Mult

1 3d 3d 5

√
d -

2 ℓ 2ℓ 3ℓ -

3 ℓ - - ℓ

4 log(d/ℓ) - log(d/ℓ)

Total

3d + 2ℓ
3d + 2ℓ

3ℓ + 5

√
d

ℓ
+ log(d/ℓ) + log(d/ℓ)

Table 3: Complexity of Algorithm 3

This resulting ciphertext has the same form as a rectangular

input matrix of Algorithm 3, so it can be reusable for further matrix

computation without additional cost.

4.3 Parallel Matrix Computation
Throughout Sections 3 and 4, we have identified the message space

M = Rn with the set of matrices Rd×d under the assumption

that n = d2
. However, most of HE schemes [9, 14, 19] have a quite

large number of plaintext slots (e.g. thousands) compared to the

matrix dimension in some real-world applications, i.e., n ≫ d2
. If

a ciphertext can encrypt only one matrix, most of plaintext slots

would be wasted. This subsection introduces an idea that allows

multiple matrices to be encrypted in a single ciphertext, thereby

performing parallel matrix computation in a SIMD manner.

For simplicity, we assume that n is divisible by d2
and let д =

n/d2
. We modify the encoding map in Section 3.2 to make a 1-to-1

correspondence ιд between Rn and (Rd×d )д , which transforms an

n-dimensional vector into a д-tuple of square matrices of order d .
Specifically, for an input vector a = (aℓ)0≤ℓ<n , we define ιд by

ιд : a 7→
(
Ak = (aд ·(d ·i+j)+k )

)
0≤k<д

.

The components of a with indexes congruent to k modulo д are

corresponding to the k-th matrix Ak .
We note that for an integer 0 ≤ ℓ < d2

, the rotation operation

ρ(a;д · ℓ) represents the matrix-wise rotation by ℓ positions. It can

be naturally extended to the other matrix-wise operations including

scalar linear transformation and matrix multiplication. For example,

we can encrypt д number of d × d matrices into a single ciphertext

and perform the matrix multiplication operations between д pairs

of matrices at once by applying our matrix multiplication algorithm

on two ciphertexts. The total complexity remains the same as Algo-

rithm 2, which results in a less amortized computational complexity

of O(d/д) per matrix.

5 IMPLEMENTATION OF HOMOMORPHIC
MATRIX OPERATIONS

In this section, we report the performance of our homomorphic

matrix operations and analyze the performance of the implemen-

tation. For simplicity, we assume that d is a power-of-two integer.

In general, we can pad zeros at the end of each row to set d as a

power of two.
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Dim Throughput

Message Expansion Encoding+ Decoding+ Amortized time per matrix

size (KB) rate Encryption (s) Decryption (s) HE-MatAdd (ms) HE-MatMult (s) HE-MatTrans (s)

4

1 0.47 3670 0.034 0.009 0.622 0.779 0.363

16 0.75 229 0.041 0.012 0.046 0.047 0.018

256 12.0 14 0.095 0.081 0.025 0.003 0.001

16

1 0.75 229 0.033 0.013 0.622 2.501 0.847

4 3.0 57 0.048 0.027 0.188 0.649 0.211

16 12.0 14 0.097 0.078 0.043 0.162 0.049

64 1 12.0 14 0.108 0.076 0.622 9.208 2.557

Table 4: Benchmarks of homomorphic matrix operations

In our implementation, we employ a special encryption scheme

suggested by Cheon et al. [14], which supports approximate compu-

tation over encrypted data, calledHEAAN. A unique property of the

HE scheme is the rescaling procedure to truncate a ciphertext into

a smaller modulus, which leads to rounding of the plaintext. This

plays an important role in controlling the magnitude of messages,

and thereby achieving efficiency of approximate computation. For

further details, we refer to [14] and [12].

All the experiments were performed on a Macbook Pro laptop

with an Intel Core i7 running with 4 cores rated at 2.9 GHz. Our

implementation is based on the HEAAN library [13] withC++ based
Shoup’s NTL library [43].

5.1 Parameter Setting
We present how to select parameters of our underlying HE scheme

to support homomorphic matrix operations described in Section 3

and 4. Our underlying HE scheme is based on the RLWE assumption

over the cyclotomic ring R = Z[X ]/(XN + 1) for a power-of-two

integer N . Let us denote by [·]q the reduction modulo q into the

interval (−q/2,q/2]∩Z of the integer. We write Rq = R/qR for the

residue ring of R modulo an integer q. The native plaintext space
is represented as a set of (N /2)-dimensional complex vectors.

Suppose that all the elements are scaled by a factor of an integer

p and then converted into the nearest integers for quantization. If

we are multiplying a ciphertext by a plaintext vector, we assume

that the constant vector is scaled by a factor of an integer pc to
maintain the precision. Thus, the rescaling procedure after homo-

morphic multiplication reduces a ciphertext modulus by p while

the rescaling procedure after a constant multiplication reduces a

modulus by pc. For example, Algorithm 2 has depth of two con-

stant multiplications for Step 1 and 2, and has additional depth of

a single homomorphic multiplication for Step 3. This implies that

an input ciphertext modulus is reduced by (2 logpc + logp) bits
after the matrix multiplication algorithm. As a result, we obtain

the following lower bound on the bit length of a fresh ciphertext

modulus, denoted by logq:

logq =


logq0 for HE-MatAdd;

2 logpc + logp + logq0 for HE-MatMult;

logpc + logq0 for HE-MatTrans,

where q0 is the output ciphertext modulus. The final ciphertext

represents the desired vector but is scaled by a factor of p, which
means that logq0 should be larger than logp. In our implementation,

we take logp = 24, logpc = 15, and logq0 = 32.

We use the discrete Gaussian distribution of standard deviation

σ = 3.2 to sample error polynomials. The secret-key polynomials

were sampled from the discrete ternary uniform distribution over

{0,±1}N . The cyclotomic ring dimension is chosen as N = 2
13

to

achieve a 80-bit security level against the known attacks of the

LWE problem based on the estimator of Albrecht et al. [2]. In short,

we present three parameter sets and sizes of the corresponding

fresh ciphertexts as follows:

(N ,q, size) =


(213, 232, 64 KB) for HE-MatAdd;

(213, 286, 172 KB) for HE-MatMult;

(213, 247, 94 KB) for HE-MatTrans.

5.2 Performance of Matrix Operations
Table 4 presents timing results for matrix addition, multiplication,

and transposition for various matrix sizes from 4 to 64 where the

throughput means the number of matrices being processed in par-

allel. We provide three distinct implementation variants: single-
packed, sparsely-packed, and fully-packed. The single-packed imple-

mentation is that a ciphertext represents only a single matrix; two

other implementations are to encode several matrices into sparsely

or fully packed plaintext slots. We use the same parameters for

all variants, and thus each ciphertext can hold up to N /2 = 2
12

plaintext values. For example, if we consider 4 × 4 matrices, we can

process operations over 2
12/(4 · 4) = 256 distinct matrices simulta-

neously. In the case of dimension 16, a ciphertext can represent up

to 2
12/(16 · 16) = 16 distinct matrices.

5.2.1 Ciphertext Sizes. As mentioned above, a ciphertext could

hold 2
12

different plaintext slots, and thus we can encrypt one

64 × 64 matrix into a fully-packed ciphertext. We assumed that all

the inputs had logp = 24 bits of precision, which means that an

input matrix size is bounded by 64 × 64 × 24 bits or 12 KB. Since

a single ciphertext is at most 172 KB for an evaluation of matrix

multiplication, the encrypted version is 172/12 ≈ 14 times larger

than the unencrypted version. In Table 4, the third column gives

the size of input matrices and the fourth column gives an expansion

ratio of the generated ciphertext to the input matrices.
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5.2.2 Timing Results. We conducted experiments over ten times

and measured the average running times for all the operations. For

the parameter setting in Section 5.1, the key generation takes about

1.277 seconds. In Table 4, the fifth column gives timing for encoding

input matrices and encrypting the resulting plaintext slots. Since

matrix multiplication requires the largest fresh ciphertext modulus

and takes more time than others, we just report the encryption

timing results for the case. In the sixth column, we give timing for

decrypting the output ciphertext and decoding to its matrix form.

Note that encryption and decryption timings are similar each other;

but encoding and decoding timings depend on the throughput. The

last three columns give amortized time per matrix for homomorphic

matrix computation. The entire execution time, called latency, is
similar between the three variant implementations so the parallel

matrix computation provides roughly a speedup as a factor of the

throughput.

5.3 Performance of Rectangular Matrix
Multiplication

We present the performance of Algorithm 3 described in Section 4.2.

As a concrete example, we consider the rectangular matrix multi-

plication R16×64 × R64×64 → R16×64
. As we described above, our

optimized method has a better performance than a simple method

exploiting Algorithm 2 for the multiplication between 64 × 64 ma-

trices.

To be precise, the first step of Algorithms 2 or 3 generates two

ciphertexts ct.A(0) and ct.B(0) by applying the linear transforma-

tions of U σ
and U τ

, thus both approaches have almost the same

computational complexity. Next, in the second and third steps, two

algorithms apply the same operations to the resulting ciphertexts

but with different numbers: Algorithm 2 requires approximately

four times more operations compared to Algorithm 3. As a result,

Step 2 turns out to be the most time consuming part in Algorithm 2,

whereas it is not the dominant procedure in Algorithm 3. Finally,

Algorithm 3 requires some additional operations for Step 4, but we

need only log(64/16) = 2 automorphisms.

Table 5 summarizes an experimental result based on the same

parameter as in the above section. The total running times of two al-

gorithms are 9.21 seconds and 4.29 seconds, respectively; therefore,

Algorithm 3 achieves a speedup of 2X compared to Algorithm 2.

Algorithm Step 1 Step 2 Step 3 Step 4 Total

HE-MatMult
2.36s

5.70s 1.16s - 9.21s

HE-RMatMult 1.53s 0.35s 0.05s 4.29s

Table 5: Performance comparison of homomorphic square
and rectangular matrix multiplications

6 E2DM: MAKING PREDICTION BASED ON
ENCRYPTED DATA AND MODEL

In this section, we propose a novel framework E2DM to test en-

crypted convolutional neural networks model on encrypted data.

We consider a new service paradigm where model providers offer

encrypted trained classifier models to a public cloud and the cloud

server provides on-line prediction service to data owners who up-

loaded their encrypted data. In this inference, the cloud should

learn nothing about private data of the data owners, nor about the

trained models of the model providers.

6.1 Neural Networks Architecture
The first viable example of CNNon image classificationwasAlexNet

by Krizhevsky et al. [32] and it was dramatically improved by Si-

monyan et al. [44]. It consists of a stack of linear and non-linear
layers. The linear layers can be convolution layers or FC layers.

The non-linear layers can be max pooling (i.e., compute the max-

imal value of some components of the feeding layer), mean pool-

ing (i.e., compute the average value of some components of the

feeding layer), ReLu functions, or sigmoid functions.

Specifically, the convolution operator forms the fundamental

basis of the convolutional layer. The convolution has kernels, or

windows, of size k ×k , a stride of (s, s), and a mapcount of h. Given

an image I ∈ Rw×w and a kernel K ∈ Rk×k , we compute the

convolved image Conv(I ,K) ∈ RdK×dK by

Conv(I ,K)i′, j′ =
∑

0≤i, j<k

Ki, j · Is ·i′+i,s ·j′+j

for 0 ≤ i ′, j ′ < dK = ⌈(w − k)/s⌉ + 1. Here ⌈·⌉ returns the least

integer greater than or equal to the input. It can be extended to

multiple kernels K = {K (k )}
0≤k<h as

Conv(I ,K) = (Conv(I ,K (0)), · · · , Conv(I ,K (h−1))) ∈ RdK×dK×h .

On the other hand, FC layer connects nI nodes to nO nodes, or

equivalently, it can be specified by the matrix-vector multiplication

of an nO ×nI matrix. Note that the output of convolution layer has

a form of tensor so it should be flatten before FC layer. Throughout

this paper, we concatenate the rows of the tensor one by one and

output a column vector, denoted by FL(·).

6.2 Homomorphic Evaluation of CNN
We present an efficient strategy to evaluate CNN prediction model

on the MNIST dataset. Each image is a 28 × 28 pixel array, where

the value of each pixel represents a level of gray. After an arbitrary

number of hidden layers, each image is labeled with 10 possible

digits. The training set has 60,000 images and the test set has 10,000

images. We assume that a neural network is trained with the plain-

text dataset in the clear. We adapted a similar network topology to

CryptoNets: one convolution layer and two FC layers with square

activation function. Table 6 describes our neural networks to the

MNIST dataset and summarizes the hyperparameters.

The final step of neural networks is usually to apply the softmax

activation function for a purpose of probabilistic classification. We

note that it is enough to obtain an index of maximum values of

outputs in a prediction phase.

In the following, we explain how to securely test encrypted

model on encrypted multiple data. In our implementation, we take

N = 2
13

as a cyclotomic ring dimension so each plaintext vector is

allowed to have dimension less than 2
12

and one can predict 64 im-

ages simultaneously in a SIMD manner. We describe the parameter

selection in more detail below.
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Layer Description

Convolution

Input image 28 × 28, kernel size 7 × 7,

stride size of 3, number of output channels 4

1
st
square Squaring 256 input values

FC-1

Fully connecting with 256 inputs and

64 outputs: R64×256 × R256×1 → R64×1

2
nd

square Squaring 64 input values

FC-2

Fully connecting with 64 inputs and

10 outputs: R10×64 × R64×1 → R10×1

Table 6: Description of our CNN to the MNIST dataset

6.2.1 Encryption of Images. At the encryption phase, the data

owner encrypts the data using the public key of an HE scheme. Sup-

pose that the data owner has a two-dimensional image I ∈ R28×28
.

For 0 ≤ i ′, j ′ < dK = 8, let us define an extracted image feature

I [i ′, j ′] formed by taking the elements I3·i′+i,3·j′+j for 0 ≤ i, j < 7.

That is, a single image can be represented as the 64 image features

of size 7×7. It can be extended to multiple imagesI = {I (k )}
0≤k<64

.

For each 0 ≤ i, j < 7, the dataset is encoded into a matrix consisting

of the (i, j)-th components of 64 features over 64 images and it is

encrypted as follows:

ct.Ii, j = Enc


I (0)[0, 0]i, j I (1)[0, 0]i, j · · · I

(63)[0, 0]i, j
I (0)[0, 1]i, j I (1)[0, 1]i, j · · · I

(63)[0, 1]i, j
...

...
. . .

...

I (0)[7, 7]i, j I (1)[7, 7]i, j · · · I
(63)[7, 7]i, j


.

The resulting ciphertexts {ct.Ii, j }0≤i, j<7 are sent to the public

cloud and stored in their encrypted form.

6.2.2 Encryption of Trained Model. The model provider encrypts

the trained prediction model values such as multiple convolution

kernels’ values K = {K (k )}
0≤k<4

and weights (matrices) of FC

layers. The provider begins with a procedure for encrypting each of

the convolution kernels separately. For 0 ≤ i, j < 7 and 0 ≤ k < 4,

the (i, j)-th component of the kernel matrix K (k ) is copied into

plaintext slots and the model provider encrypts the plaintext vector

into a ciphertext, denoted by ct.K (k )i, j .

Next, the first FC layer is specified by a 64 × 256 matrix and it

can be divided into four square sub-matrices of size 64 × 64. For

0 ≤ k < 4, we writeWk to denote the k-th sub-matrix. Each matrix

is encrypted into a single ciphertext using the matrix encoding

method in Section 3.2, say the output ciphertext ct.Wk .

For the second FC layer, it can be expressed by a 10 × 64 matrix.

The model provider pads zeros in the bottom to obtain a matrix V
of size 16 × 64 and then generates a 64 × 64 matrix V̄ containing

four copies of V vertically, say the output ciphertext ct.V . Finally,
the model provider transmits three distinct types of ciphertexts to

the cloud: ct.K (k )i, j , ct.Wk , and ct.V .

6.2.3 Homomorphic Evaluation of Neural Networks. At the pre-

diction phase, the public cloud takes ciphertexts of the images

from the data owner and the neural network prediction model

from the model provider. Since the data owner uses a SIMD tech-

nique to batch 64 different images, the first FC layer is specified

as a matrix multiplication: R64×256 × R256×64 → R64×64
. Simi-

larly, the second FC layer is represented as a matrix multiplication:

R10×64 × R64×64 → R10×64
.

Homomorphic convolution layer. The public cloud takes the ci-

phertexts ct.Ii, j and ct.K (k)i, j for 0 ≤ i, j < 7 and 0 ≤ k < 4. We

apply pure SIMD operations to efficiently compute dot-products

between the kernel matrices and the extracted image features. For

each 0 ≤ k < 4, the cloud performs the following computation on

ciphertexts:

ct.Ck ←
∑

0≤i, j<7

Mult(ct.Ii, j , ct.K
(k )
i, j ).

By the definition of the convolution, the resulting ciphertext ctk
represents a square matrix Ck of order 64 such that

Ck =


...

...

FL(Conv(I (0),K (k))) · · · FL(Conv(I (63),K (k )))
...

...


.

That is, it is an encryption of the matrixCk having the i-th column

as the flatten convolved result between the the i-th image I (i) and

the k-th kernel K (k) .

The first square layer. This step applies the square activation

function to all the encrypted output images of the convolution in a

SIMD manner. That is, for each 0 ≤ k < 4, the cloud computes as

follows:

ct.S(1)k ← SQR(ct.Ck )

where SQR(·) denotes the squaring operation of an HE scheme. Note

that ct.S(1)k is an encryption of the matrix Ck ⊙ Ck .

The FC-1 layer. This procedure requires a matrix multiplication

between a 64 × 256 weight matrix W = (W0 |W1 |W2 |W3) and a

256 × 64 input matrix C = (C0 ⊙ C0; C1 ⊙ C1; C2 ⊙ C2; C3 ⊙ C3).

The matrix productW ·C is formed by combining the blocks in the

same way, that is,

W ·C =
∑

0≤k<4

(Wk · (Ck ⊙ Ck )).

Thus the cloud performs the following computation:

ct.F ←
∑

0≤k<4

HE-MatMult(ct.Wk , ct.S
(1)

k ).

The second square layer. This step applies the square activation

function to all the output nodes of the first FC layer:

ct.S(2) ← SQR(ct.F ).

The FC-2 layer. This step performs the rectangular multiplica-

tion algorithm between the weight ciphertext ct.V and the output

ciphertext ct.S(2) of the second square layer:

ct.out← HE-RMatMult(ct.V , ct.S(2)).
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6.2.4 The Threat Model. Suppose that one can ensure the IND-CPA
security of an underlying HE scheme, which means that ciphertexts

of any two messages are computationally indistinguishable. Since

all the computations on the public cloud are performed over encryp-

tion, the cloud learns nothing from the encrypted data so we can

ensure the confidentiality of the data against such a semi-honest

server.

6.3 Performance Evaluation of E2DM
We evaluated our E2DM framework to classify encrypted handwrit-

ten images of the MNIST dataset. We used the library keras [15]
with Tensorflow [1] to train the CNN model from 60,000 images

of the dataset by applying the ADADELTA optimization algo-

rithm [50].

6.3.1 Optimization Techniques. Suppose that we are given an en-

cryption ct.A of a d × d matrix A. Recall from Section 3 that we

apply homomorphic liner transformations to generate the encryp-

tion ct.A(ℓ) of a matrix ϕℓ ◦σ (A) for 0 ≤ ℓ < d . Sometimes one can

pre-compute ϕℓ ◦ σ (A) in the clear and generate the corresponding

ciphertexts for free. Thus this approach gives us a space/time trade-

off: although it requires more space for d ciphertexts rather than

a single ciphertext, it reduces the overhead of rotation operations

from (3d + 5

√
d) to (d + 2

√
d), achieving a better performance. This

method has another advantage, in that an input ciphertext mod-

ulus is reduced by (logp + logpc) bits after matrix multiplication

while (logp + 2 logpc) in the original method. This is because the

encryptions of ϕk ◦ σ (A) are given as fresh ciphertexts and it only

requires additional depths to generate the encryptions ofψk ◦ τ (B).
We can apply this idea to the FC layers. For each 0 ≤ k < 4

and 0 ≤ ℓ < 64, the model provider generates a ciphertext ct.W (ℓ)k
representing the matrix ϕℓ ◦ σ (Wk ) of the first FC layer. For the

second FC layer, the provider generates an encryption ct.V (ℓ) of
the matrix ϕℓ ◦ σ (V̄ ) for 0 ≤ ℓ < 16.

6.3.2 Parameters. The convolution layer and the square activa-

tion layers have a depth of one homomorphic multiplication. As

discussed before, the FC layers have depth of one homomorphic

multiplication and one constant multiplication by applying the pre-

computation optimization technique. Therefore, the lower bound

on the bit length of a fresh ciphertext modulus is 5 logp + 2 logpc +
logq0. In our implementation, we assume that all the inputs had

logp = 24 bits of precision and set the bit length of the out-

put ciphertext modulus as logq0 = logp + 8. In addition, we set

logpc = 15 for the bit precision of constant values. We could actu-

ally obtain the bit length of the largest ciphertext modulus around

182 and took the ring dimension N = 2
13

to ensure 80 bits of

security. This security was chosen to be consistent with other per-

formance number reported from CryptoNets. Note that a fresh

ciphertext has 0.355 MB under this parameter setting.

6.3.3 Ciphertext Sizes. Each image is a 28 × 28 pixel array, where

each pixel is in the range from 0 to 255. The data owner first

chooses 64 images in the MNIST dataset, normalizes the data by

dividing by the maximum value 255, and generates the cipher-

texts {ct.Ii, j }0≤i, j<7. The total size of ciphertexts is 0.355 × 49 ≈

17.417 MB and a single ciphertext contains informations of 64 im-

ages, and therefore the total ciphertext size per image is 17.417/64 ≈

0.272 MB or 278 KB. Since each image has approximately 28 × 28 ×

24 bits, it is 121 times smaller than the encrypted one. Meanwhile,

the model provider generates three distinct types of ciphertexts:

• ct.K (k )i, j for 0 ≤ i, j < 7 and 0 ≤ k < 4;

• ct.W (ℓ)k for 0 ≤ k < 4 and 0 ≤ ℓ < 64;

• ct.V (ℓ) for 0 ≤ ℓ < 16.

The total size of ciphertexts is 0.355 × 468 ≈ 166.359 MB. After the

homomorphic evaluation of E2DM, the cloud sends only a single

ciphertext to an authority who is the legitimate owner of the secret

key of the HE scheme. The ciphertext size is around 0.063 MB and

the size per image is 0.063/64 MB ≈ 1 KB. Table 7 summarizes the

numbers in the second and third columns.

Ciphertext size Size per instance

Data owner→ Cloud 17.417 MB 278 KB

Model provider→ Cloud 166.359 MB -

Cloud→ Authority 0.063 MB 1 KB

Table 7: Ciphertext sizes of E2DM

6.3.4 Implementation Details. The key generation takes about 1.38

seconds for the parameters setting in Section 6.3.2. The data owner

takes about 1.56 seconds to encrypt 64 different number of images.

Meanwhile, the model provider takes about 12.33 seconds to gen-

erate the encrypted prediction models. This procedure takes more

time than the naive method but it is an one-time process before

data outsourcing and so it is a negligible overhead.

In Table 8, we report timing results for the evaluation of E2DM.

The third column gives timings for each step and the fourth column

gives the relative time per image (if applicable). The dominant

cost of evaluating the framework is that of performing the first FC

layer. This step requires four matrix multiplication operations over

encrypted 64×64matrices so it expects to take about 9.21×4 ≈ 36.84

seconds from the result of Table 4. We further take advantage of

the pre-computation method described in Section 6.3.1, and thereby

it only took about 20.79 seconds to evaluate the layer (1.8 times

faster). Similarly, we could apply this approach to the second FC

layer, which leads to 1.97 seconds for the evaluation. In total, it

took about 28.59 seconds to classify encrypted images from the

encrypted trainingmodel, yielding an amortized rate of 0.45 seconds

per image.

After the evaluation, the cloud returns only a single packed

ciphertext that is transmitted the authority. Then the output can

be decrypted with the secret key and the authority computes the

argmax of 10 scores for each image to obtain the prediction. These

procedures take around 0.07 seconds, yielding an amortized time

of 1.14 milliseconds per image. In the end, the data owner gets the

results from the authority.

This model achieves an accuracy of 98.1% on the test set. The

accuracy is the same as the one obtained by the evaluation of the

model in the clear, which implies that there is no precision loss

from the approximate homomorphic encryption.
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Stage Latency (s)

Amortized time

per image (ms)

Data Encoding +

Encryption

1.56 24.42

owner

Model Encoding +

Encryption

12.33 -

provider

Cloud

Convolution 5.68 88.75

1
st
square 0.10 1.51

FC-1 20.79 324.85

2
nd

square 0.06 0.96

FC-2 1.97 30.70

Total 28.59 446.77

Authority

Decoding +

0.07 1.14

Decryption

Table 8: Performance results of E2DM for MNIST

6.4 Comparison with Previous Work
Table 9 compares our benchmark result for the MNIST dataset with

the state-of-the-art frameworks: CryptoNets [24], MiniONN [34],

and GAZELLE [29]. The first column indicates the framework and

the second column denotes the method used for preserving pri-

vacy. The last columns give running time and communication costs

required for image classification.

6.4.1 HE-based Frameworks. We used a similar network topology

to CryptoNets (only different numbers of nodes in the hidden lay-

ers) but considered different scenario and underlying cryptographic

primitive. CryptoNets took 570 seconds to perform a single predic-

tion, yielding in an amortized rate of 0.07 seconds. In our case, data

is represented in a matrix form and applied to the evaluation of

neural networks using homomorphic matrix operations. As a result,

E2DM achieves 20-fold reduction in latency and 34-fold reduction

in message sizes. CryptoNets allows more SIMD parallelism, so it

could give better amortized running time. However, this implies

that CryptoNets requires a very large number of prediction to yield

better amortized complexity, so its framework turns out to be less

competitive in practice.

6.4.2 Mixed Protocol Frameworks. Liu et al. [34] presented Min-

iONN framework of privacy-preserving neural networks by em-

ploying a ciphertext packing technique as a pre-processing tool.

Recently, Juvekar et al. [29] presented GAZELLE that deploys au-

tomorphism structure of an underlying HE scheme to perform

matrix-vector multiplication, thereby improving the performance

significantly. It took 30 milliseconds to classify one image from the

MNIST dataset and has an online bandwidth cost of 0.5 MB. Even

though these mixed protocols achieve relatively fast run-time, they

require interaction between protocol participants, resulting in high

bandwidth usage.

7 RELATEDWORKS
7.1 Secure Outsourced Matrix Computation
Matrix multiplication can be performed using a series of inner prod-

ucts. Wu and Haven [48] suggested the first secure inner product

method in a SIMD environment. Their approach is to encrypt each

row or column of a matrix into an encrypted vector and obtain

component-wise product of two input vectors by performing a

single homomorphic multiplication. However, it should aggregate

all the elements over the plaintext slots in order to get the desired

result and this procedure requires at least logd automorphisms.

Since one can apply this solution to each row ofA and each column

of B, the total complexity of secure matrix multiplication is about

d2
multiplications and d2

logd automorphisms.

Recently, several other approaches have been considered by

applying the encoding methods of Lauter et al. [40] and Yasuda et

al. [49] on an RLWE-based HE scheme. Duong et al. [18] proposed

a method to encode a matrix as a constant polynomial in the native

plaintext space. Then secure matrix multiplication requires only

one homomorphic multiplication over packed ciphertexts. This

method was later improved in [37]. However, this solution has a

serious drawback for practical use: the resulting ciphertext has

non-meaningful terms in its coefficients, so for more computation,

it should be decrypted and re-encoded by removing the terms in

the plaintext polynomial.

Most of related works focus on verifiable secure outsourcing

of matrix computation [4, 11, 20, 38]. In their protocols, a client

delegates a task to an untrusted server and the server returns the

computation result with a proof of the correctness of the compu-

tation. There are general results [16, 20, 21] of verifiable secure

computation outsourcing by applying a fully HE scheme with Yao’s

Garbled circuit or pseudo-random functions. However, it is still far

from practical to apply these theoretical approaches to real-world

applications.

7.2 Privacy-preserving Neural Networks
Predictions

Privacy-preserving deep learning prediction models were firstly

considered by Gilad-Bachrach et al. [24]. The authors presented

the private evaluation protocol CryptoNets for CNN. A number of

subsequent works have improved it by normalizing weighted sums

prior to applying the approximate activation function [10], or by

employing a fully HE to apply an evaluation of an arbitrary deep

neural networks [7].

There are other approaches for privacy-preserving deep learning

prediction based on MPC [5, 41] or its combination with (additively)

HE. The idea behind such hybrid protocols is to evaluate scalar prod-

ucts using HE and compute activation functions (e.g. threshold or

sigmoid) using MPC technique. Mohassel and Zhang [39] applied

the mixed-protocol framework of [17] to implement neural net-

works training and evaluation in a two-party computation setting.

Liu et al. [34] presented MiniONN to transform an existing neu-

ral network to an oblivious neural network by applying a SIMD

batching technique. Riazi et al. [42] designed Chameleon, which

relies on a trusted third-party. Their frameworks were later im-

proved in [29] by leveraging effective use of packed ciphertexts.

Even though these hybrid protocols could improve efficiency, they

result in high bandwidth and long network latency.
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Framework Methodology

Runtime (s) Communication (MB)

Offline Online Total Amortized Offline Online Total Cost per instance

CryptoNets HE - - 570 0.07 - - 595.5 0.07

MiniONN HE, MPC 0.88 0.40 1.28 1.28 3.6 44 47.6 47.6

GAZELLE HE, MPC 0 0.03 0.03 0.03 0 0.5 0.5 0.5

E2DM HE - 28.59 0.45 - - 17.48 0.27

Table 9: MNIST Benchmark of privacy-preserving neural network frameworks

8 CONCLUSION
In this paper, we presented a practical solution for secure out-

sourced matrix computation. We did demonstrate its applicability

by presenting a novel framework E2DM for secure evaluation of

encrypted neural networks on encrypted data. Our benchmark

shows that E2DM achieves lower messages sizes and latency than

the solution of CryptoNets.

Our secure matrix computation primitive can be applied to vari-

ous computing applications such as genetic testing and machine

learning. In particular, we can investigate financial model evalua-

tion based on our E2DM framework. Our another future work is

to extend the matrix computation mechanism for more advanced

operations.
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