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Abstract—Machine learning applications are intensively utilized in various science fields, and increasingly the biomedical and
healthcare sector. Applying predictive modeling to biomedical data introduces privacy and security concerns requiring
additional protection to prevent accidental disclosure or leakage of sensitive patient information. Significant advancements in
secure computing methods have emerged in recent years, however, many of which require substantial computational and/or
communication overheads, which might hinder their adoption in biomedical applications. In this work, we propose SecurelLR, a
novel framework allowing researchers to leverage both the computational and storage capacity of Public Cloud Servers to
conduct learning and predictions on biomedical data without compromising data security or efficiency. Our model builds upon
homomorphic encryption methodologies with hardware-based security reinforcement through Software Guard Extensions
(SGX), and our implementation demonstrates a practical hybrid cryptographic solution to address important concerns in

conducting machine learning with public clouds.
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1 INTRODUCTION

The abundance of biomedical data [1] provides many

opportunities for knowledge discovery in the healthcare
and biomedical domains, and as a result, data
increasingly drive biomedical research initiatives [2], [3].
However, researchers using these data hold the
responsibility of ensuring their privacy and security
during the entire process of data analysis. The recent
influx of malicious attacks on medical data [4], [5]
increases the need for improved data protection measures
and to prevent sensitive information leakage to
unauthorized users.

Administrative and technical safeguard solutions have
been developed and improved during the past decade.
Many novel approaches and policies [5]-[9], have been in
place to provide protection for sensitive biomedical data.
Due to the large size of biomedical data, storage and
computation are so overwhelming that it is hard for small
institutions to host and analyze such data efficiently.
Cloud computing has emerged as an ideal enabling
platform due to the scalability and cost-effectiveness.
However, new challenges have emerged as a result of this
practice, where currently, health data are regulated by
privacy policies such as the HIPAA Privacy Rule [9].
Additionally, computational resources in the cloud are
shared among different users, and data within the cloud
may be backed up across different regions, which impose
further privacy and security risks. When medical records

are not properly protected, security breaches within the
health sector may result in identity theft or medical fraud
for patients who inadvertently become victims of these
attacks, which can, among other adversities, cause
financial devastation or lead to social humiliation and
discrimination when their personal information is leaked
[10]. Motivated by these challenges, it is imperative to
develop secure and efficient methods to support valuable
biomedical studies and to facilitate open science [11] in
biomedical research.

In this paper, we focus on the study of secure
predictive modelling in public cloud environments,
where both data storage and analysis are outsourced.
More specifically, we target the logistic regression
algorithm, which is widely used in many different
biomedical applications such as disease prediction, risk
assessment and so on. For example, logistic regression has
been shown capable of accurately predicting survival
among patients with advanced liver disease [12] and to
provide decision support in the early diagnosis of acute
myocardial infarction [13]. There have been many existing
studies contributing to the problem of secure and
privacy-preserving logistic regression analyses based on
techniques like differential privacy [14], [15], federated
data analysis [16]-[18], and cryptographic methods
[19]-[22]. In federated data analysis, it assumes that data
are distributed among different institutions. Instead of
directly sharing patient-level data with others, the
intermediary statistics with much less sensitive
information will be exchanged to build a global training
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protocol for logistic regression. For example, a Grid
Binary LOgistic REgression (GLORE) model [16] was
proposed to estimate global model parameters for
horizontally partitioned data (i.e. data in each institution
have the same attributes but they are from different
patients). GLORE was further extended by Wang et al.
[17] to support privacy-preserving federated online
learning in a Bayesian paradigm. Moreover, the
protection of exchanging intermediary statistics in
distributed model learning were studied in [19], [20], [22]
by using different crypto schemes (e.g., homomorphic
encryption and secure multiparty computation).
However, only limited studies have been conducted to
support securely logistic regression in a cloud
environment. Another relevant work is from Aono et. al.
[21] which proposed a quadratic approximation method
of the standard non-polynomial sigmoid function to
support outsourced training tasks in logistic regression.
However, such methods still require the interaction
between the cloud and the data owner. Our goal is to
develop a security model to support fully outsourced
logistic regression analysis.

Ideally, we would like to use homomorphic encryption
(HME) [23], a cryptosystem providing rigorous
guarantees and being natural to secure outsourcing.
However, existing HME-based techniques [24] require
substantial storage and computational overhead, which
make them impractical for biomedical analysis tasks [24].
On the other hand, the recently released Software Guard
Extensions (SGX) architecture provides an advanced
hardware isolation mechanism to enable data owners to
seal sensitive data computation inside an enclave. This
new feature is readily available in the consumer market in
Intel (6th-generation or higher) processors. The claim is
that any computation completed within the enclave can
be protected from most external attacks with minimal
overhead. Despite biomedical applications demonstrated
by us in [25]-[27] using SGX, some recent studies [28],
[29] have shown a few potential attacks for SGX-based
framework, such as controlled side-channel attack,
cache-timing attack, etc.

We aim to combine the best of both worlds. The main
contributions of this study are threefold. First, we aim at
closing this technology gap to help biomedical
researchers perform fully outsourced secure logistic
regression analysis efficiently by taking advantage of a
hybrid solution incorporating HME and SGX based
secure hardware [30] technologies [30]. Furthermore,
inspired by the idea of SMC secret sharing [31], our
proposed  hybrid design distributes  encrypted
computation between SGX-based secure hardware and
HME to achieve not only a strong protection but also
better efficiency. Lastly, we evaluate the proposed
SecureLR framework on various datasets to demonstrate
its capabilities and compare its performance against a
plaintext implementation and previous secure logistic
regression solutions [20].

2 BACKGROUND

2.1 Homomorphic Encryption

Homomorphic Encryption is an encryption scheme which
allows data to undergo certain arithmetic operations (e.g.
addition and multiplication) while protected under
encryption, or in the form of a ciphertext, without
requiring the data to be revealed or decrypted. Three
predominant schemes are employed - partial, fully, and
leveled homomorphic encryption (HME) - each with a
trade-off between computational and space efficiency and
complexity [32]. While partial HME may offer less space
and computational overhead compared to the other two
schemes, it only allows for a single type of operation,
either addition or multiplication, between two
ciphertexts. On the contrary, fully HME schemes support
an unlimited number of both addition and multiplication
operations, but require a time-consuming bootstrapping
process to refresh the ciphertext noise, or the small
quantity of error which accumulates during
homomorphic arithmetic operations, which renders it
impractical for many real-world applications.
Considering these disadvantages, we leverage leveled
HME, also referred to as leveled fully HME, which can
support a parametrically-set number of both arithmetic
operations without resulting in decryption errors [33].
HME pertains to two mathematical spaces, the plaintext
and ciphertext spaces, which we discuss as follows.
Assuming that n is a power of two, the plaintext space is
given by the ring structure R, =Z[x]/(x" +1), where ¢ is
the plaintext modulus, meaning that this space is defined
by polynomials of degree less than n and with coefficients
modulo t. The ciphertext space defined similarly by the
ring R, =Z,[x)/(x"+1), where g is the coefficient
modulus. It is in the ciphertext space where we perform
encryption and homomorphic multiplication and
addition operations. These ring structures are in part
defined by the polynomial modulus p =x"+1(as in the

ring “learning with errors” or (R)LWE problem [34]). By
setting ¢ and t as prime numbers such that g = 1(mod 2n)

and 7= 1 (mod 2n) , we may utilize the Number Theoretic

Transform (NTT) for multiplication between polynomials,
which improves computational performance. This in turn
lets us take advantage of CRT batching, which allows for
many distinct values to be stored in a single ciphertext
upon which we apply arithmetic operations on all
elements within the ciphertext in a Single Instruction
Multiple Data (SIMD) manner.

Each operation under homomorphic encryption
operation introduces a small bit of error, called noise,
within the given ciphertexts. Once the ciphertext’s
accumulated noise reaches the maximum noise budget, its
decryption is inaccurate (i.e. the encrypted information is
overwritten with noise) [33]. To overcome this,
bootstrapping operations are used in fully HME,
however, this approach is computationally expensive. We
propose a mechanism to “refresh” our ciphertexts, or
remove this error by decrypting and re-encrypting in an
SGX enclave as an efficient and secure alternative (see
§3.4 and Algorithm 3 for further discussion).


https://paperpile.com/c/2SfJvy/swKT9
https://paperpile.com/c/2SfJvy/8qzdq
https://paperpile.com/c/2SfJvy/xXBKn+NnsrD+SVmfO
https://paperpile.com/c/2SfJvy/VQj9e
https://paperpile.com/c/2SfJvy/q01bx
https://paperpile.com/c/2SfJvy/L26bQ
https://paperpile.com/c/2SfJvy/L26bQ
https://paperpile.com/c/2SfJvy/eUZQQ+LDOip+uDYO3
https://paperpile.com/c/2SfJvy/j0LDT+nhRJw
https://paperpile.com/c/2SfJvy/j0LDT+nhRJw
https://paperpile.com/c/2SfJvy/pIGlj
https://paperpile.com/c/2SfJvy/pIGlj
https://paperpile.com/c/2SfJvy/9xSht
https://paperpile.com/c/2SfJvy/SVmfO
https://paperpile.com/c/2SfJvy/y08gv
https://paperpile.com/c/2SfJvy/ut35X
https://paperpile.com/c/2SfJvy/cs6t5

JIANG, HAMER & WANG ET AL.: SECURELR

2.2 Software Guard Extensions

Software Guard Extensions (SGX) is a security feature of
the Intel (6th-generation or later) processor architecture,
which provides a hardware-supported area for secure
and confidential computing, called an enclave. SGX uses
an “inverse sandbox” design method, which seals private
codes, sensitive data, and other selected “secrets” into the
enclave’s memory, which may not be read or written to
by unapproved or untrusted components regardless of
CPU mode or privilege level. The enclave encapsulates
confidential data and computation, and serves to prevent
its leakage in the event that privileged modules become
corrupted, vulnerable to attacks, or potentially malicious
[35]. When lower-level or privileged components become
compromised, e.g. the BIOS or Operating System (OS),
applications that properly utilize an enclave may
maintain their security guarantees. As shown in Figure 1,
a traditional application would arbitrarily allow direct
access to its data through function calls or remain
susceptible to infiltration through memory manipulation.
In contrast, applications supported by SGX can seal secret
data within an enclave and exclusively allow access to
trusted or authorized code. Therefore by using SGX,
applications that undergo malicious attacks or run on
potentially untrusted hosts can maintain their security
integrity.

Malicious Access I

Compromised Privileged Components

Fig. 1. Traditional vs. SGX-enabled Computation. Comparison
between traditional and SGX-enabled computation models when
privileged hosting components are compromised.

Compromised Privileged
Components

2.3 Logistic Regression

Logistic regression is a binary classification algorithm
with wide applications in the biomedical informatics,
including clinical decision support,, risk assessment, and
disease classification. Logistic regression estimates the
probability (i.e. predicts) a categorical characteristic based
on a combination of input variables (e.g., estimates 1: that
a patient exhibits condition A, or 0: patient does not have
condition A).

Suppose a dataset consists of n records (or samples used
for training and testing the regression model), and m
features (independent or predictor variables), with an
observed binary class label for each record (dependent
variable). We denote the training records by a matrix
X =(x,x,, ...,x,,)T e R™ such that each row vector x; € X

is x; =(x,',x2 ..., x/)', where x/ is the j™ feature of the
i" record, and the corresponding labels are Y, where

Y =1,V .y, . We also add an additional variable to

X serving as a bias, which will represent the classification
probability when all predictor variables are 0. Then, given
the likelihood function of the form

POy = 1" w) = gl,"w) = 1/(1 + exp(-x,"w)
we can learn or optimize regression model parameters
w=w!w?, .., w’”)T , where by training a regression
model on the given X and Y through maximizing the
following log-likelihood function:

L(w) = X y,log(g(s; w)) + (1 ~y)log(1 = g(x,"w)) .

Because there is no closed-form solution to this function,
we maximize it by approximating its gradient with
respect to w, using an algorithm called gradient ascent

(which we discuss in more detail in §3.4). Here, the
logistic function, g(z) = 1/(1 +exp(—z)), often referred to

as the link function in logistic regression, is sigmoidal (an
S-shaped curve). As its codomain lies on the interval [0,1],
it lends itself as an ideal function for computing the
probability of an outcome based on the inputs at which it
is evaluated. Furthermore, this form of regression does
not require that its dependent variables (y,'s ) be normally

distributed, which makes it easy to handle
classification problems [36].

binary

3 METHODOLOGY AND PROTOCOL DESIGN

Our proposed model consists of four primary entities,
who each play a role in the SecureLR protocol and
perform transactions contributing to its functionality and
security.

1. Data Owners (DOs): an institution that holds the
biomedical data and would like to outsource their
storage and analysis to Cloud Service Providers (CSPs)
in secure manner.

2. Cloud Service Providers (CSPs): trusted entities that
provide: (i) the outsourced storage of data (encrypted,
from DOs), (ii) the interface for Authorized
Researchers (ARs) to perform secure logistic
regression over such datasets, and (iii) return the
trained model parameters in ciphertext to the
requesting ARs.

3. Authorized Researchers (ARs): individuals who
receive authorization by an Authentication Service
provider (ASP) to request SecureLR services through
the CSP (using certain encrypted datasets from DOs).
The ARs receive encrypted, trained regression
parameters and may decrypt them locally.

4. Authentication Service Provider (ASP): A trusted
entity which performs authorization of: (i) the DOs to
outsource encrypted private datasets to a CSP, (ii) the
ARs to request SecureLR training services on CSP
using these outsourced and encrypted data, (iii) the
ARs for the decryption of encrypted model
parameters, (iv) verification of the remote enclave on
the CSP to ensure the security and integrity during the
entire lifecycle of SecureLR.

Our proposed protocol assumes the involvement of two
CSPs [37], [38], one to perform HME computation and the
other to support the enclave (i.e. for secure hardware
computation). We consider the two CSPs are
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non-colluding, semi-honest parties, where each correctly
follows the protocol, but might be curious about other’s
information if it is directly observable.

The SecureLR framework workflow consists of five key
processes (as illustrated in Fig. 2) which we discuss in
detail in the following sections.

3.1 Homomorphic Encryption Initialization

Step 1: Initialize and Distribute HME Parameters
(CSP1-ARs, CSP2, DOs). In the SecureLR framework,
the CSP1 initializes the homomorphic environment. The
current SecureLR framework is optimized for the FV

CH

Researchers (ARs) Cloud Service

Provider 1 (C5P1)
|

Initialize HME environment

I

Cloud Service
Provider 2 (C5P2)

(Fan-Vercauteren) HME scheme [33], however one may
choose other HME schemes [39], [40]. This environment
requires setting a few specific parameters prior to
applying its encryption functions. These parameters
impact many aspects of the framework, including its level
of security, computational capacity, and size of encrypted
data, and thus need to be selected carefully (see §4 for a
brief description on parameter selection). Once initialized,
these parameters are distributed to the DOs, ARs, and
CSPs.

Authentication Service
Provider (ASP)

=

Data Owners (DOs)

Distri

bute HME Parameters

HME
Initialization

Remote Attestation

Key
Distribution

Generate HME Key Pairs
(K e K i)

ing

Data

Encrypt Training Data using
k', (@nd CRT batching)

Generate One-Time-Use
Random Values = Encrypt
using klpl,b Perform Secure Logistic Regression

Send Encrypted Rondom Values  Computation under HME

er Intermediate Gradient

! provisionin

1. Decrypt intermediate values
2. Perform Secure Scale-Down,

° o

SecurelR
Maodel Training

Generate HME Key Pairs
(5 pube K priw)
L

o Distribute Public Key k>

I Slot Aggregation of values

1. Decrypt Trained Model

Maodel
Retrieval

Send Bock Encrypted Result

Decrypt Trained Parameters
= I using k%,

F within Encl
2. Re-encrypt using k2,

Fig. 2. SecureLR Protocol Workflow. Overview of our proposed SecureLR framework, consisting of five principal major stages: HME
initialization, remote attestation and key distribution, data provisioning, SecureLR model training and model retrieving.

3.2 Remote Attestation and Key Distribution

In SGX [28], [30], the remote attestation process ensures
that the code executed in the enclave is trusted, and a
secure channel between the enclave and the enclave
creator (i.e. ASP) has been established.

Step 2-4: Authentication Request (ARs, DOs—»ASP) and
Remote Attestation (ASP-CSP1, CSP2). The attestation
process consists of several message exchanges between
the enclave and the enclave creator, and may be viewed
as a modified SIGMA protocol [41]. First, the public key
of the client is sealed in the enclave, while the public key
of the enclave is stored as part of the Intel Attestation
Service (IAS). IAS is a part of ASP which provided
directly by Intel and it is used to validate the authenticity

and integrity of secure hardware environment. Therefore,
to verify the authenticity of the enclave’s signature, the
client must pass it to the IAS for evaluation. The
crypto-system for attestation of such keys is performed
through an Enhanced Privacy ID algorithm, where a
common group public verification key corresponds to a
group of private keys. With the enclave’s private key
residing among this group, its uniqueness cannot be
recovered via the public key, thus protecting its identity.
The IAS then sends the response to the client to indicate
whether the attestation process passes or not, and a
secure channel is established for further communication.

Step 5: Generate and Distribute HME Key Pairs
(CSP2-CSP1, DOs, ARs) After successful attestation, the
verified enclave on CSP2 generates a pair of HME keys,
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the public key, kllmb and its associated private key, kél,gc.
The k,lmb will be distributed to DOs to encrypt their

datasets for secure data outsourcing, as well as the ARs
for encrypted random number generation to assist in
secure computation between CSPs. We assume the
security of private key kigc is ensured by the secure

enclave under the non-colluding semi-honest security
model. In addition, the AR will generate another HME
key pair kﬁub and k., where the public key kﬁub will be

sent to CSP2 to encrypt the resulting trained (regression)
parameters. The details of encrypting these results are
described in §3.4.

3.3 Data Provisioning and Encryption

Step 6: Encrypt and Upload Training Data
(DOs—->CSP1). The initial task after the verification of
trusted parties involved in the proposed SecureLR
protocol requires that the DOs encrypt all entries in their
dataset (i.e. X and Y) using k}mb obtained from the

verified enclave (hosted by the CSP2). A straightforward,
naive method for encrypting this dataset is for DOs to
individually encrypt the elements in X, or the x/’s, each

in their respective ciphertexts; this results in n*m

ciphertexts and a significant increase in storage and
computational overheads. As we mentioned in §3.1, the
HME CRT-batching scheme (based on the Chinese
Remainder Theorem [42]) allows for applying the same
arithmetic operations to multiple elements in an SIMD
manner, such that the slots within the operand ciphertexts
undergo the arithmetic, which greatly reduces the space
and computational complexity of the naive encryption
approach. Intuitively, a CRT-batch can be thought of as
having a structure similar to an array or column vector of
encrypted values, where each value is stored in a slot,
however instead of being accessible, the entire structure is
encapsulated within a single unit. Thus, we may encrypt
an entire dataset X comprised of m features into only m

batched ciphertexts, where x/ , the column containing the

™ features of all n

) =elrt, 5/ xd]17),
encryption function of HME scheme . We utilize the same
methodology to encrypt the observed class label Y into a
single batched ciphertext, such that
e¥)=¢e(y,, ¥y ¥,17). A small caveat of using

samples of X, becomes

where edenotes an

CRT-batching (in our implementation) requires the
encrypted values be unsigned integers. To accommodate
the unsigned requirement, meaning stored values must be
positive, we represent negative values using Two’s
Complement number representation form. To address
the need for integer values, we introduce a scaling factor
B, with which to scale up all floating point numbers into

integers with the precision of 1/p. For example, given a
number a=0.0123 and a scaling factor B =1000, the
scaled integer will be a = truncate(a * B) = 12, resulting in
a one-digit loss in precision. The selection of B is based

on the desired precision to be preserved in the fixed-point
approximation of the floating numbers in the proposed

framework. As the scaling factor is independent of the
datasets, it is a fixed parameter, which could be chosen by
the researcher before the secure computation and will not
increase the privacy/security risk of the proposed
framework. It is worth mentioning that there is a trade-off
between computational performance and fixed-point
approximation accuracy. Through several experiments,
we found B =1000 provides a balanced trade-off.

Step 7: Generate and Encrypt Random Values for SMC
(ARs»CSP1). The ARs requesting SecureLR services
initialize and encrypt one-time-use random values to be
employed during the logistic regression portion of the
SecureLR protocol. ARs initialize three lists of such
random values, and apply the same encryption technique
(see §3.4, Algorithm 1).

1 T T
1

081 e 1
........ PRI + 0.5 //
06 ==—=AISR (1 iter.) g J
AISR (2 iter.) o
04t 1

—k— AISR (3 iter,)
’/

0.2

Fig. 3. Sigmoidal Function Comparison. Different methods of
approximating the sigmoid function: an inverse of a square root
(ISR) approximation, a new iterative approximation of ISR (AISR)
using 1, 2 and 3 iterations of approximation on the input range of
(-8,8).

3.4 SecureLR Model Training

We now discuss the problem of maximum likelihood
estimation (§2.3 for an introduction). Though no
closed-form solution exists, there are many algorithms
that can be used to approximate its solution. Some of
these involve variations on Newton’s method and require
matrix inversion, even a particularly efficient derivative
known as Iteratively Reweighted Least Squares (IRLS),
and others, such as the Fixed-Hessian Newton method,
additionally require the inversion of a Hessian matrix,
which may be especially costly under HME computation
[43]. Although secure matrix inversion using a garbled
circuit-based method [19] has been attempted, the
scalability issue when using large datasets, and the
requirement of synchronization among cooperating
parties prevents us from implementing this in our
protocol. With these considerations, we turn to another
widely implemented algorithm we modify to support
HME and SMC techniques we now discuss.

Step 8: Secure Logistic Regression under HME (CSP1,
CSP2, ARs). To achieve maximum likelihood estimation,
we take advantage of the gradient ascent algorithm to
maximize the log-likelihood function (§2.3). This
algorithm has been made famous by the resurgence in
popularity of neural networks, and is more commonly
seen referred to as gradient descent. We note that these are
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in essence identical algorithms, however in ascent we seek
to find a local maximum, whereas the descent counterpart
seeks to minimize a cost function, or minimize error by
finding a local minimum. One benefit of gradient ascent
over Newtonian methods is that it allows us to
approximate the gradient of the log-likelihood function
with respect to all training samples in each of its
iterations, which we will herein refer to as epochs, and
similarly perform an update to the regression model
parameters without involving expensive matrix inversion
(in the sense of encrypted operations). This allows us to
develop an algorithm which utilizes SIMD operations on
CRT-batched ciphertexts (see Algorithm 1).

In our SecureLR implementation, the model parameters
are iteratively updated via gradient ascent, given by

Wy —w; T aly; — g(wx))x/

where g() is the sigmoid function, a is the learning rate,

and w; is the i parameter to update during each epoch

with respect to the i sample. The remaining challenge is
to transform this process to satisfy HME conditions
without compromising efficiency or accuracy. As we
cannot evaluate the exponential function nor division
under HME, we must approximate the sigmoid function
used in this algorithm.

A straightforward approximation of the sigmoid
function using Taylor series introduces a substantial cost
and has limited accuracy [21]. In the proposed SecureLR
framework, we employ a novel approach to achieve this
using alternative approximations with improved
efficiency without sacrificing the performance of logistic
regression. We use the approximation function

g2 = # +0.5 (see red dots line in Fig. 3) based on
original formula given as g(z) = vffr_—z . We performed grid

search on the hyperparameters a and b such that we can
minimize the mean squared errors (MSE) between the
approximation function the and original sigmoid function
with in the range (-8,8), which closely mimics the sigmoid
function (black line in Fig. 3). Both approximations rely
on a key function that is the inverse of a square root,
which fortunately, can be calculated efficiently using

Newton's algorithm (only wusing addition and
multiplication) [44]. More specifically, one can iteratively
approximate this key function as

Uy = 05w, (3 — (2.722+2%) -, ?), where k is the k"
iteration in this approximation of ISR (AISR) method. For
example, using u,=0.14 as an initial value, the blue

star-dot line in Figure 3 shows the closeness in
approximation after only 3 iterations of AISR.

We summarize the details of the proposed SecureLR
framework in Algorithms 1 to 4. In Algorithm 1, lines 1-4,
the DOs performs a one-time encryption of the local
dataset using an efficient batching scheme to allow SIMD
operation over O(m) ciphertexts instead of O(nm)

ciphertexts as with the naive approach, vastly improving
storage and secure computation performance. In lines 5-6,
ARs initialize a SecureLR request to CSP with several
parameters.

Lines 8-15 describe the proposed gradient ascent (GA)
based SecureLR training algorithm. In line 9, we perform
batched matrix-vector multiplication over homomorphic
encrypted data resulting in O(m) multiplication and

addition operations compared with O(nm*) operations

with naive dataset encryption. In line 10, we implement
the proposed AISR method for efficiently approximating
the logistic function used in GA.

As shown in Algorithm 2, we propose our design of a
unique combination of security protocols through HME,
where we perform the bulk of our secure computation
over the encrypted dataset, and delegate the task of
refreshing the accumulated ciphertext noise and rescaling
of the underlying plaintext value (after a certain number
of arithmetic operations under HME) to the enclave.

Algorithm 3 depicts the steps in line 14 of Algorithm 1,
which we implement using the enclave in CSP2 to
aggregate the inner-slots of batched ciphertexts due to a
computational limitation of our current HME
implementation, we also resort to CSP2 for the inner-slots
aggregation of the batched ciphertexts to the enclave. To
safely perform the aforementioned operations, one-time
random values must first be added to such ciphertexts to
mask out the original plaintexts before being sent to the
enclave on CSP2. Since kpubl is shared with the ARs, they

will initialize and encrypt these random values, then send
them to CSP1 where the values are added to the
intermediate ciphertexts as a form of mask, and the newly
scrambled encrypted data can be safely transferred to
CSP2 to undergo the operations.

Step 9: Re-encrypt Model Parameters (CSP2->ARs). In
Algorithm 1, Lines 16 to 20 depict the secure model
parameter retrieval protocol, where the garbled model

parameters are re-encrypted in the enclave with the kzpu,,

(described in Algorithm 4). Upon receiving the securely
encoded model parameters, ARs are able to remove their
self-generated random values and recover the original,

trained parameters.

Algorithm 1: SecureLR using Gradient Ascent and a Hybrid, Secure Model

Notation: &(z) < z: batched encryption of a plaintext vector z with key! pup (Where each slot of &(z) stores an element of vector z)

£/(z) denotes the ciphertext encrypted by key? pup (€€ §3.3).

B : public scaling factor to encode floating-point numbers as integers.
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i,j, kg, kg, 1:the i-th slot in a ciphertext, the indices of the j-th feature in X, the k, -th random noise in &(R), the kg-th
random noise in &(S), the /-th iteration in GA, respectively.
k++: post- mcrement operator which i increases k after the current value of k is used.

Lines: Given proper remote attestation, authorrzatron and dissemination of encryption keys as deprcted in Figure 2.
Note that unless specifically stated, all operations are under HME on CSP1.

1: |Using key ! , from the authenticated enclave, DO performs a one-time encryption of the dataset (locally):
8 1€V Lup P ryp y

2: Encryption of X: for-each j=0tom-1: &(x') « x’ (where the bias term x" is a known value of 1’s and not encrypted to
optimize the number of HME operations)

3: | Encryption of scaled Y: &(Y ) « ¥ *
4 | DOs send encrypted dataset to CSP1
5: |AR initializes a SecureLR request to CSP1 with the parameters as follows:
6: Initialization of model parameters in plaintext:
a (learning rate), N (# of epochs in GA), L (# of iterations in AISR), u, (initial value for AISR),
e(R) = {&(r)), &(r?), &(ry), &(r?), ...e(ry), &r ;(R)} - a list of one-time-use encrypted random values for secure scaling
operations within the enclave, where K, =N * L and r} = Round(r,/p)
&(S) = {e(s)), &(s D), &(5y), &(5 %), .es &(5g), €S ‘,’(S)} - a list of one-time-use encrypted random values for secure inner-slot
aggregation within the enclave, where Kg =N *m and s = is :
£(0) = {&(0,), &(0 ,), ...,&(0om)} - a list of one-time-use encrypted random values for secure re-encryption operations
within the enclave
7: Initialization and encryption of scaled model (regression) parameters (values randomly generated between 0, 1):
for j=0tom:
eW) « rand(0,1) * B
end-for

8: |Gradient Ascent (GA) based:
Set kg =0 and k, =0
for-each epoch /=11 N in GA

9: Securely evaluate v =X - w efficiently using CRT-batching:

Initialization of &(v)as &(v)=g(w")

forj=1tom-1:

e(v) « &(v) +&(¥) *xe(w)

end-for

10: Secure approximate evaluation of vy = AISR(v) ~ g(v) = 1/(1 + exp(— v)) using AISR with output of &(vs) on CSP2
(see Algorithm 2)

11: | Compute &g(e”) = &(vs) — &(v)
12: | forj=1tom:
13: | ifj <m: e(e) =e(el) * e(f)
14: Secure inner-slot aggregation of g(a’) = za(li1 é;)on CSP2 (see Algorithm 3)
15: Securely update model parameters: g(w/) < g(w) + a * g(a’)

end-for
end-for-each
16: [Securely retrieve trained model (regression) parameters:

17: forj=1tom:
18: Secure re-encryption of &(w/) using key?,,, with output of &(w/) on CSP2 (see Algorithm 4)
19 CSP 1 sends £(w) back to AR for model parameter decryption
20: AR computes (W) = (W) - o, and performs decryption with key?,. to obtain the final parameter w/

end-for

Algorithm 2: Secure AISR Evaluation
Lines: Given u,, &R), kg, v in Algorithm 1
1: [fori=1toL
g) = 0.5 g, ) 3 — 2.722+e0v)) - ()%
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2: ‘ Securely rescale &(u,):
CSP1 sends s(u';) « &(u;) + s(rkR) to the secure enclave hosted by CSP2
3: | Enclave decrypts g(u';) followed by a scaling-down operation with a factor of B (i.e., u",=u'/B);
4: Return re-encrypted &(u";) to CSP1 to remove the additive noise as
‘ ) e(u") —e(r’, )
5: | Return: (u,)
Algorithm 3: Secure Ageregation of Ciphertext Inner-Slots
Lines: Given &(€), &S), kg, v in Algorithm 1

1: |CSP 1 sends g(¢) = &(&) + £(sy,) to the secure enclave hosted by CSP 2

3:

(a!) — ela’) ~ ol . )

4: |Return: g(a’)

2 |Enclave decryptse(e)) followed by an inner-slot aggregation computation as a/ = Y. ¢/,
=

Return re-encrypted €(a’) to CSP 1 to remove the additive noise as

Algorithm 4: Secure Re-encryption of Model Parameters

Lines: Given j, (W), &), key? oup N Algorithm 1
1: |CSP1 sends &(w') = e(w/) + (g(0;)) to the enclave hosted by CSP2
2: | Enclave decrypts ('), then re-encrypts with key?
3: |Return: g'(w)

pub *

De(wW) —w

4 EXPERIMENTAL SETUP

We implement the proposed SecureLR framework in C++
using the Microsoft SEAL v2.1 HME library [45] and
Intel® SGX, SDK v1.7. We evaluate all experiments on an
SGX-enabled PC with a 2.7GHz Intel® Core™ i7-6820HK
(x64 based) processor and 48.0GB RAM (Windows 10
Pro), connected via Ethernet. For homomorphic
encryption, we select the following parameters to achieve
sufficient security and correctness for use of NTT and
CRT batching: the polynomial modulus p = 1 #x%%2+1,

n=28192, security parameter A =80, coefficient modulus
q=2"°-2*+1, and plaintext modulus ¢=1073692673.

These parameters satisfy
n > &l x Jog(q)

and result in batched ciphertexts with a capacity of 8192
slots, such that each ciphertext uses 512.0KB of memory
[46]. Logistic regression parameters require tuning, and
are typically selected via cross-validation over plaintext.
Given the nature of the SecureLR, manually tuning the
model’s hyperparameters may pose as a challenge under
encryption for wusers (ARs), though given the
computational power of the CSP, applying a Grid Search
approach to hyperparameter optimization may be feasible
(e.g. with cooperation between the CSPs and ARs to
implement an early stopping technique to know when to
halt the training process when a poor combination is
being tested, or test the model to know when to select a
near-optimal one). Thus for our demonstration, we show
results for both model and dataset-specific, tuned
hyperparameters, as well as by fixing a, N, and u,as a

= 0.01, N = 20, and u,= 0.001 (Table 2). Experimental
results are obtained through 10-fold cross-validation.

5 EXPERIMENTAL RESULTS

We compare our proposed SecureLR framework with
logistic regression over the plaintext datasets to measure
the model’s accuracy (in terms of the AUC, or Area Under
the Curve), space complexity to demonstrate
approximated storage costs, and runtime of model
training as our performance metric. The size of a single
batched ciphertext is based on the aforementioned HME
parameters we select for our experiments to
accommodate all datasets we test on. We summarize the
datasets we use for all evaluative experiments in Table 1
(the first three are biomedical, and the last from an
original comparison on machine learning algorithms).

TABLE 1
DEescRrIPTION OF DATASETS

Edinburgh| SPECT | WI-Breast | MONK's
Datasets MI [47] |Heart [48]|Cancer [49]| Prob. [50]

# of samples 1252 267 699 556

# of features 10 23 10 7
Ciphertext (MB)| 5.01 11.5 5.01 3.51
Plaintext (KB) 34.3 19.6 25.2 14.7

Details of the four datasets used in our experiments. Ciphertext and
plaintext indicate the size before and after batch-encryption

The overall space complexity of our protocol depends
principally upon the size of the dataset; in particular, the
number of features or attributes (i.e. m) indicates the base
size of encrypted data in SecureLR, as we demonstrate for
our experimental datasets in Table 1. The selection of the
number of epochs of gradient ascent and number of
iterations of the AISR algorithm (i.e. N and L, respectively)
determines the additional cost of the one-time random
number generation by the ARs used in Algorithms 2 and 3
for security against advanced attacks within CSP1 and CSP2.
Hence, the overall space complexity of SecureLR is given by
O(m)+ O(N * L)+ O(N).
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We choose to demonstrate the accuracy of SecureLR by
displaying our results for two distinct tests (given in
Table 2). The first test which shows the comparative
accuracy of SecureLR using AISR-1 and AISR-3 against
logistic regression over the plaintext datasets using the
standard sigmoid function, g,(z) =1/1 + exp(—z) and the

unapproximated ISR function g,(z)= +0.5.We

2.722 +22
denote these as trivial, as we fixed the logistic regression
hyperparameters (a, N, and u,), not necessarily

optimized for any particular set of functions and datasets,
and evaluated all datasets and models using these.

TABLE 2
AccuUrAacy oF DIFFERENT MODELS
AUC

Trivial (Fixed HP) Optimized
Datasets Sigmoid| ISR |AISR-1| AISR-3 [AISR-1* |]AISR-3*
Edin. | 0.972 |0.950| 0.595 | 0.623 0.941 | 0.956
SPECT | 0.842 |[0.854| 0.762 | 0.797 0.849 | 0.886
WIBC 0.955 10.946| 0.889 0.875 0.960 0.980
MONK’s| 0.741 |0.727| 0.742 0.740 0.766 0.776

Comparison of AUC performance between SecureLR using AISR and
logistic regression over plaintext using Sigmoid and ISR.

TABLE 3
HYPERPARAMETER SELECTION USED IN TABLE 2
Fixed HP AISR-1* AISR-3*
Datasets | u, | o [N | u, a | N | u, a | N
Edin. 0.01 ]0.06] 5 ]0.01]|0.07| 5
SPECT ]0.001{0.01) 20 | 0.01 [0.008| 10 |0.01 |0.008 5
WIBC 0.01 ]0.002| 10 |0.01 [0.003 10
MONK’s 0.01 ]0.005] 5 [0.001] 0.03| 10

Description of hyperparameters used to demonstrate accuracy of the
SecureLR protocol.

The nature of hyperparameter selection is
well-known to be dataset or problem dependent in the
machine learning community, and to address this
potential difficult, we show the performance of SecureLR
with hyperparameters tuned for each dataset and AISR-1*
and AISR-3* using a modified Grid Search approach, as
well as the results for hyperparameters selected to
somewhat suit all four models and datasets (an often
challenging task). We do this to demonstrate the
protocol’s performance in the case that a potential user
(ARs) chooses to utilize the computing power of the CSP
to perform hyper parameter optimization on their dataset,
or select “somewhat default” settings. Empirically, we
find that the “somewhat default” settings may require
more epochs to achieve convergence (i.e. in the case of the
Edinburgh MI dataset for AISR-1 and AISR-3, we achieve
a high AUC=>0.90-0.96for both approximations after 200
epochs.

Edin. SPECT WHBC MONK's

Fig. 4. Runtime of Aisr-1, 2 & 3. Overall runtime of SecureLR using
1, 2, and 3 iterations of the AISR approximation algorithms for each
dataset (in minutes).

The proposed SecureLR achieves comparable AUC
performance for most testing datasets. However, it is
worth mentioning that there is a slower rate of
convergence for the Edinburgh MI dataset under the
default parameter settings. In Table 2, we demonstrated
that we can improve the AUC performance by increasing
either a or u,by a factor of 10 to improve the rate of

convergence when this occurs. We admit that this is one
of limitations of gradient ascent based optimization
methods, where it may need fine-tuned hyper-parameter
settings to achieve the best AUC performance for some
datasets.

We  demonstrate the runtime of SecureLR
corresponding to the results for AISR-1 and AISR-3 with
20 epochs of gradient ascent, depicting the total training
time (Fig. 4) and average time per epoch, corresponding
to the experiments using fixed hyperparameters. Our
experiments demonstrate that for some combinations of
a, N, and u,, there may be an improvement in accuracy
using L=3 versus L=1 in the AISR algorithm with a
trade-off of a small increase in runtime per epoch.
Empirically, the cost of using more iterations increases
linearly with respect to the size of the input.

TABLE 4
AVERAGE TIME PER EPOCH OF AisR-1, 2 & 3

Time per epoch (s)
Datasets AISR-1 AISR-2 AISR-3
Edin. 44.9 53.6 62.4
SPECT 82.8 92.4 102
WI-BC 44.6 53.2 61.8
MONK’s 36.0 44.6 53.3

Average runtime per epoch of SecureLR using 1, 2, and 3 iterations of the
AISR approximation algorithms (in seconds).

To further demonstrate the performance of SecureLR, we
compare it with two existing SMC-based secure logistic
regression protocols. Firstly, the privacy-preserving model of
Aono et al. [51] employs a method which makes use of secure
two-party computation. The space complexity of their model
is O(nm®), where n denotes the number of training samples
and m the number of features), whereas, the base space
complexity of our protocol is given by O(m) to encode the

given dataset, plus O(N * L)+ O(N) additional ciphertexts
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used in the secure logistic regression computation. Similarly,
the model by Aono et al. demonstrates a time complexity of
O(mm?). Our protocol uses O(m#*N *L) time for secure
logistic regression with N epochs for gradient ascent,
wherein each requires m steps to compute the product of Xw
with L iterations of AISR approximation.

Next, we examine the tradeoffs between the
SMAC-GLORE model by Wang et al. [19], which employs
secure multi-party computation to build a Grid logistic
regression model. As demonstrated by their experiments, the
model requires 47 minutes, to compute logistic regression
training over a small dataset containing 60 samples with 3
binary-encoded features. In comparison, we train our model
on a dataset containing 699 samples and 10 attributes in less
than 10 and a half minutes (on average for a full instance of
SecureLR training). Thus, our protocol offers both
computational efficiency and accuracy with real world,
practical applications.

6 DiscussioN

In the proposed SecureLR framework, there are two
secrets which are subjected to restricted privacy policy:
the private biomedical data from DOs and the trained
model results for ARs. Since throughout the process, ASP
only handles attestation and authentication tasks, we
consider that ASP will not have access to the
aforementioned encryption keys. Thus, we concentrate on
the following potential information leakage situations to
demonstrate the SecureLR model is secure and
privacy-preserving.

1. DOs—»CSPs: All data sent from the DOs to CSP1 is
protected under HME. The pairs of encryption keys
used in this process are generated within an
authenticated enclave on CSP2, which is sealed off
from unauthorized access. Given our assumption that
the CSPs are non-colluding and semi-honest parties,
and all data remains in encrypted form while on CSP1,
we maintain our data security guarantee within this
scope. Additionally, all data sent to CSP2 are masked
with one-time-use random values prior to decryption
inside its enclave. Thus these data remain private and
protected during this process.

2. DOs-»ARs: The ARs receive trained model
parameters in the final step of the SecureLR protocol,
which are encrypted and decrypted using kzpub and

K. respectively. This separate pair of keys are

specific to the ARs, and are unable to decrypt the DOs’
dataset. ARs are furthermore unable to learn
information regarding the plaintext dataset used to
train these parameters.

3. ARs—»CSPs: During the training process, all the
intermediate results are either encrypted under HME
on CSP1 or masked by random values before being
decrypted in the enclave on CSP2. The model training
results remain encrypted and masked by random
values while stored on CSPs. Thus, CSPs do not have
the ability to access the training data nor resulting
model parameters.

The proposed SecureLR framework has a few
limitations. To wuse computationally efficient HME

techniques under our current design, including
CRT-batch encryption and moderately sized ciphertexts,
our implementation requires that we store encrypted
values as integers. To represent floating-point numbers in
the correct form, we must first apply a scale factor to
encode them up to a specified level of precision.
Increasing this level of precision without compromising
encryption security results in a larger ciphertext, which in
turn leads to increases in both the computational and
storage costs of the model. In addition, we introduced an
algorithmic method to approximate the sigmoid function
(AISR); while this algorithm evaluates a simpler circuit
than the standard logistic function in which the
exponential  function must be computed, the
approximation accuracy of this approach depends upon
the initial value, u, and the number of iterations, L. The

resulting loss in precision may affect the model’s rate of
convergence or accuracy. The proposed SecureLR
framework uses Gradient Ascent, which requires more
iterations to tune the regression parameters to maximize
the likelihood estimation than the Newton-Raphson
algorithm and other Newtonian methods.

In employing SGX, we assume that the secret key it
stores will not be stolen by a malicious party or attackers.
Besides this, our solution is immune to controlled-channel
and cache-timing attacks, as SGX has recently been shown
with vulnerabilities to those attacks [52]. As we only let
SGX do very limited operations and utilize secure
multi-party computation techniques when sharing
encrypted data with it, our solution has significantly
reduced the attack surface within the enclave.

7 CONCLUSION

In this paper, we propose a framework for conducting
privacy-preserving logistic regression based on a hybrid
cryptographic model using homomorphic encryption and
secure hardware, ideal for learning from biomedical and
sensitive data in a public cloud environment. Our
proposed method provides a multi-faceted data
provisioning approach: we take advantage of
homomorphic CRT-batching methods for increased
computational efficacy through SIMD operations and
reduced storage demands, as well as incorporate an
SMC-inspired techniques to mask out the underlying
plaintext values between two CSPs. Our method allows
for practical use of logistic regression on health and other
patient-linked data in the public cloud. In the future, we
will extend our protocol to support secure and efficient
multinomial/multiclass logistic regression and other
biomedical data analysis methods.


https://paperpile.com/c/2SfJvy/NnsrD
https://paperpile.com/c/2SfJvy/fxz9

JIANG, HAMER & WANG ET AL.: SECURELR

ACKNOWLEDGMENT

This work is supported by the ROOHG008175,
RO1GM114612, UO01EB023685, NSERC Discovery
Grants (RGPIN-2015-04147) and University of
Manitoba Startup Grant.

REFERENCES

[1] S.-A.Sansone et al., “DATS: the data tag suite to enable
discoverability of datasets,” bioRxiv, p. 103143, 25-Jan-2017.

[2] “All of Us Research Program,” National Institutes of Health (NIH).
[Online]. Available:
https:/ /www.nih.gov /research-training /allofus-research-progr
am. [Accessed: 07-Feb-2017].

[3] “Precision Medicine Initiative | National Institutes of Health
(NIH).” .

[4] S. of California, “Investigation of major Anthem cyber breach
reveals foreign nation behind breach.” [Online]. Available:
http:/ /www.insurance.ca.gov/0400-news/0100-press-releases /
2017 /release001-17.cfm. [Accessed: 30-Jul-2017].

[5] M. Naveed et al., “Privacy in the Genomic Era,” ACM Comput
Surv, vol. 48, no. 1, Sep. 2015.

[6] B.Malin, D. Karp, and R. H. Scheuermann, “Technical and
policy approaches to balancing patient privacy and data sharing
in clinical and translational research,” J. Investig. Med., vol. 58,
no. 1, pp. 11-18, Jan. 2010.

[7]1 S.N.Murphy, V. Gainer, M. Mendis, S. Churchill, and I.
Kohane, “Strategies for maintaining patient privacy in i2b2,” J.
Am. Med. Inform. Assoc., vol. 18 Suppl 1, pp. i103-8, Dec. 2011.

[8] H. Tang et al., “Protecting genomic data analytics in the cloud:
state of the art and opportunities,” BMC Med. Genomics, vol. 9,
no. 1, p. 63, Oct. 2016.

[9] “Health Insurance Portability and Accountability Act (HIPAA).”

[10] HealthITSecurity, “How are Healthcare Data Breach Victims
Affected by Attacks?,” HealthITSecurity, 13-Sep-2016. [Online].
Available:
https:/ /healthitsecurity.com/news/how-are-healthcare-data-br
each-victims-affected-by-attacks. [Accessed: 01-Sep-2017].

[11] E. C. McKiernan et al., “How open science helps researchers
succeed,” Elife, vol. 5, Jul. 2016.

[12] P. S. Kamath and W. Kim, “The model for end-stage liver
disease (MELD),” Hepatology, vol. 45, no. 3, pp. 797-805, 2007.

[13] R. L. Kennedy, A. M. Burton, H. S. Fraser, L. N. McStay, and R.
F. Harrison, “Early diagnosis of acute myocardial infarction
using clinical and electrocardiographic data at presentation:
derivation and evaluation of logistic regression models,” Eur.
Heart ]., vol. 17, no. 8, pp. 1181-1191, Aug. 1996.

[14] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic
regression,” in Advances in Neural Information Processing Systems,
2008, pp. 289-296.

[15] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett,
“Functional Mechanism: Regression Analysis Under Differential
Privacy,” Proceedings VLDB Endowment, vol. 5, no. 11, pp.
1364-1375, Jul. 2012.

[16] Y. Wu, X. Jiang, J. Kim, and L. Ohno-Machado, “Grid Binary
LOgistic REgression (GLORE): building shared models without
sharing data.,” J. Am. Med. Inform. Assoc., vol. 2012, no. 5, pp.
758-764, Apr. 2012.

[17] S. Wang, X. Jiang, Y. Wu, L. Cui, S. Cheng, and L.
Ohno-Machado, “EXpectation Propagation LOgistic REgRession
(EXPLORER): distributed privacy-preserving online model
learning,” . Biomed. Inform., vol. 46, no. 3, pp. 480-496, Jun. 2013.

[18] Y. Wu, X. Jiang, S. Wang, W. Jiang, P. Li, and L. Ohno-Machado,
“Grid multi-category response logistic models,” BMC Med.
Inform. Decis. Mak., vol. (15), no. 1, pp. 1-10, 2015.

[19] H. Shi et al., “Secure Multi-pArty Computation Grid LOgistic

11

REgression (SMAC-GLORE),” BMC Med. Inform. Decis. Mak.,
vol. 16 Suppl 3, p. 89, Jul. 2016.

[20] W. Xie, Y. Wang, S. M. Boker, and D. E. Brown, “PrivLogit:
Efficient Privacy-preserving Logistic Regression by Tailoring
Numerical Optimizers,” arXiv [cs.LG], 03-Nov-2016.

[21] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, “Scalable
and Secure Logistic Regression via Homomorphic Encryption,”
in Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, New Orleans, Louisiana, USA, 2016, pp.
142-144.

[22] K. El Emam, S. Samet, L. Arbuckle, R. Tamblyn, C. Earle, and M.
Kantarcioglu, “A secure distributed logistic regression protocol
for the detection of rare adverse drug events,” J. Am. Med.
Inform. Assoc., vol. 20, no. 3, pp. 453-461, 2013.

[23] M. Kim and K. Lauter, “Private genome analysis through
homomorphic encryption,” BMC Med. Inform. Decis. Mak., vol.
15 Suppl 5, p. S3, Dec. 2015.

[24] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can
Homomorphic Encryption Be Practical?,” in Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop, Chicago,
Illinois, USA, 2011, pp. 113-124.

[25] F. Chen et al., “PRINCESS: Privacy-protecting Rare disease
International Network Collaboration via Encryption through
Software guard extensionS,” Bioinformatics, vol. 33, no. 6, pp.
871-878,2017.

[26] E. Chen, M. Dow, S. Ding, and Others, “PREMIX:
PRivacy-preserving EstiMation of Individual admiXture,” in
American Medical Informatics Association Annual Symposium,
Chicago, 2016.

[27] F. Chen et al., “PRESAGE: PRivacy-preserving gEnetic testing
via SoftwAre Guard Extension,” BMC Medical Genomics, vol. 10,
no. 2, p. 48, 2017.

[28] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology
ePrint Archive, Report 2016/086, 2016. https://eprint. iacr.
org/2016/086.

[29] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
Security and Privacy (SP), 2015 IEEE Symposium on, 2015, pp.
640-656.

[30] “Intel® Software Guard Extensions (Intel® SGX).” [Online].
Available:
https:/ /software.intel.com/en-us/isa-extensions/intel-sgx.
[Accessed: 01-Feb-2016].

[31] A. C. Yao, “Protocols for secure computations,” in Foundations of
Computer Science, 1982. SFCS 08. 23rd Annual Symposium on,
1982, pp. 160-164.

[32] E. Armknecht et al., “A Guide to Fully Homomorphic
Encryption.”

[33] J. Fan and F. Vercauteren, “Somewhat Practical Fully
Homomorphic Encryption,” IACR Cryptology ePrint Archive, vol.
2012, p. 144, 2012.

[34] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices
and Learning with Errors over Rings,” in Advances in Cryptology
— EUROCRYPT 2010, 2010, pp. 1-23.

[35] admin, “Intel SGX Homepage | Intel® Software,” Intel,
28-Mar-2016. [Online]. Available:
http:/ /software.intel.com/en-us/sgx. [Accessed: 15-Aug-2017].

[36] G. Rodriguez, “Lectures notes about generalized linear models,”
2008.

[37] Z. Huang, H. Lin, J. Fellay, Z. Kutalik, and J.-P. Hubaux, “SQC:
secure quality control for meta-analysis of genome-wide
association studies,” Bioinformatics, vol. 33, no. 15, pp.
2273-2280, Aug. 2017.

[38] K. A. Jagadeesh, D.J. Wu, J. A. Birgmeier, D. Boneh, and G.
Bejerano, “Deriving genomic diagnoses without revealing
patient genomes,” Science, vol. 357, no. 6352, pp. 692-695, Aug.
2017.

[39] S. Halevi and V. Shoup, “Algorithms in HElib,” Advances in
Cryptology--CRYPTO 2014, pp. 554-571, 2014.

[40] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic


http://paperpile.com/b/2SfJvy/aYkoM
http://paperpile.com/b/2SfJvy/aYkoM
http://paperpile.com/b/2SfJvy/aYkoM
http://paperpile.com/b/2SfJvy/aYkoM
http://paperpile.com/b/2SfJvy/aYkoM
http://paperpile.com/b/2SfJvy/aYkoM
http://paperpile.com/b/2SfJvy/pa31M
http://paperpile.com/b/2SfJvy/pa31M
http://paperpile.com/b/2SfJvy/pa31M
http://paperpile.com/b/2SfJvy/pa31M
https://www.nih.gov/research-training/allofus-research-program
https://www.nih.gov/research-training/allofus-research-program
http://paperpile.com/b/2SfJvy/pa31M
http://paperpile.com/b/2SfJvy/Ejl6k
http://paperpile.com/b/2SfJvy/Ejl6k
http://paperpile.com/b/2SfJvy/Lca3Z
http://paperpile.com/b/2SfJvy/Lca3Z
http://www.insurance.ca.gov/0400-news/0100-press-releases/2017/release001-17.cfm
http://www.insurance.ca.gov/0400-news/0100-press-releases/2017/release001-17.cfm
http://paperpile.com/b/2SfJvy/Lca3Z
http://paperpile.com/b/2SfJvy/yZSGs
http://paperpile.com/b/2SfJvy/yZSGs
http://paperpile.com/b/2SfJvy/yZSGs
http://paperpile.com/b/2SfJvy/yZSGs
http://paperpile.com/b/2SfJvy/yZSGs
http://paperpile.com/b/2SfJvy/yZSGs
http://paperpile.com/b/2SfJvy/H6ZqH
http://paperpile.com/b/2SfJvy/H6ZqH
http://paperpile.com/b/2SfJvy/H6ZqH
http://paperpile.com/b/2SfJvy/H6ZqH
http://paperpile.com/b/2SfJvy/H6ZqH
http://paperpile.com/b/2SfJvy/H6ZqH
http://paperpile.com/b/2SfJvy/f3s5v
http://paperpile.com/b/2SfJvy/f3s5v
http://paperpile.com/b/2SfJvy/f3s5v
http://paperpile.com/b/2SfJvy/f3s5v
http://paperpile.com/b/2SfJvy/f3s5v
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/ZP46y
http://paperpile.com/b/2SfJvy/UuI62
http://paperpile.com/b/2SfJvy/UuI62
http://paperpile.com/b/2SfJvy/HuJz
http://paperpile.com/b/2SfJvy/HuJz
http://paperpile.com/b/2SfJvy/HuJz
http://paperpile.com/b/2SfJvy/HuJz
http://paperpile.com/b/2SfJvy/HuJz
https://healthitsecurity.com/news/how-are-healthcare-data-breach-victims-affected-by-attacks
https://healthitsecurity.com/news/how-are-healthcare-data-breach-victims-affected-by-attacks
http://paperpile.com/b/2SfJvy/HuJz
http://paperpile.com/b/2SfJvy/2u8IT
http://paperpile.com/b/2SfJvy/2u8IT
http://paperpile.com/b/2SfJvy/2u8IT
http://paperpile.com/b/2SfJvy/2u8IT
http://paperpile.com/b/2SfJvy/2u8IT
http://paperpile.com/b/2SfJvy/2u8IT
http://paperpile.com/b/2SfJvy/X3srC
http://paperpile.com/b/2SfJvy/X3srC
http://paperpile.com/b/2SfJvy/X3srC
http://paperpile.com/b/2SfJvy/X3srC
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/daFQK
http://paperpile.com/b/2SfJvy/Y1RR5
http://paperpile.com/b/2SfJvy/Y1RR5
http://paperpile.com/b/2SfJvy/Y1RR5
http://paperpile.com/b/2SfJvy/Y1RR5
http://paperpile.com/b/2SfJvy/Y1RR5
http://paperpile.com/b/2SfJvy/fKcPW
http://paperpile.com/b/2SfJvy/fKcPW
http://paperpile.com/b/2SfJvy/fKcPW
http://paperpile.com/b/2SfJvy/fKcPW
http://paperpile.com/b/2SfJvy/fKcPW
http://paperpile.com/b/2SfJvy/fKcPW
http://paperpile.com/b/2SfJvy/swKT9
http://paperpile.com/b/2SfJvy/swKT9
http://paperpile.com/b/2SfJvy/swKT9
http://paperpile.com/b/2SfJvy/swKT9
http://paperpile.com/b/2SfJvy/swKT9
http://paperpile.com/b/2SfJvy/swKT9
http://paperpile.com/b/2SfJvy/8qzdq
http://paperpile.com/b/2SfJvy/8qzdq
http://paperpile.com/b/2SfJvy/8qzdq
http://paperpile.com/b/2SfJvy/8qzdq
http://paperpile.com/b/2SfJvy/8qzdq
http://paperpile.com/b/2SfJvy/8qzdq
http://paperpile.com/b/2SfJvy/4OqS8
http://paperpile.com/b/2SfJvy/4OqS8
http://paperpile.com/b/2SfJvy/4OqS8
http://paperpile.com/b/2SfJvy/4OqS8
http://paperpile.com/b/2SfJvy/4OqS8
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/NnsrD
http://paperpile.com/b/2SfJvy/SVmfO
http://paperpile.com/b/2SfJvy/SVmfO
http://paperpile.com/b/2SfJvy/SVmfO
http://paperpile.com/b/2SfJvy/SVmfO
http://paperpile.com/b/2SfJvy/SVmfO
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/VQj9e
http://paperpile.com/b/2SfJvy/xXBKn
http://paperpile.com/b/2SfJvy/xXBKn
http://paperpile.com/b/2SfJvy/xXBKn
http://paperpile.com/b/2SfJvy/xXBKn
http://paperpile.com/b/2SfJvy/xXBKn
http://paperpile.com/b/2SfJvy/xXBKn
http://paperpile.com/b/2SfJvy/q01bx
http://paperpile.com/b/2SfJvy/q01bx
http://paperpile.com/b/2SfJvy/q01bx
http://paperpile.com/b/2SfJvy/q01bx
http://paperpile.com/b/2SfJvy/q01bx
http://paperpile.com/b/2SfJvy/L26bQ
http://paperpile.com/b/2SfJvy/L26bQ
http://paperpile.com/b/2SfJvy/L26bQ
http://paperpile.com/b/2SfJvy/L26bQ
http://paperpile.com/b/2SfJvy/L26bQ
http://paperpile.com/b/2SfJvy/L26bQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/eUZQQ
http://paperpile.com/b/2SfJvy/LDOip
http://paperpile.com/b/2SfJvy/LDOip
http://paperpile.com/b/2SfJvy/LDOip
http://paperpile.com/b/2SfJvy/LDOip
http://paperpile.com/b/2SfJvy/LDOip
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/uDYO3
http://paperpile.com/b/2SfJvy/j0LDT
http://paperpile.com/b/2SfJvy/j0LDT
http://paperpile.com/b/2SfJvy/j0LDT
http://paperpile.com/b/2SfJvy/nhRJw
http://paperpile.com/b/2SfJvy/nhRJw
http://paperpile.com/b/2SfJvy/nhRJw
http://paperpile.com/b/2SfJvy/nhRJw
http://paperpile.com/b/2SfJvy/nhRJw
http://paperpile.com/b/2SfJvy/pIGlj
http://paperpile.com/b/2SfJvy/pIGlj
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://paperpile.com/b/2SfJvy/pIGlj
http://paperpile.com/b/2SfJvy/pIGlj
http://paperpile.com/b/2SfJvy/9xSht
http://paperpile.com/b/2SfJvy/9xSht
http://paperpile.com/b/2SfJvy/9xSht
http://paperpile.com/b/2SfJvy/9xSht
http://paperpile.com/b/2SfJvy/9xSht
http://paperpile.com/b/2SfJvy/y08gv
http://paperpile.com/b/2SfJvy/y08gv
http://paperpile.com/b/2SfJvy/y08gv
http://paperpile.com/b/2SfJvy/y08gv
http://paperpile.com/b/2SfJvy/ut35X
http://paperpile.com/b/2SfJvy/ut35X
http://paperpile.com/b/2SfJvy/ut35X
http://paperpile.com/b/2SfJvy/ut35X
http://paperpile.com/b/2SfJvy/ut35X
http://paperpile.com/b/2SfJvy/cs6t5
http://paperpile.com/b/2SfJvy/cs6t5
http://paperpile.com/b/2SfJvy/cs6t5
http://paperpile.com/b/2SfJvy/cs6t5
http://paperpile.com/b/2SfJvy/cs6t5
http://paperpile.com/b/2SfJvy/U7MJN
http://paperpile.com/b/2SfJvy/U7MJN
http://paperpile.com/b/2SfJvy/U7MJN
http://paperpile.com/b/2SfJvy/U7MJN
http://software.intel.com/en-us/sgx
http://paperpile.com/b/2SfJvy/U7MJN
http://paperpile.com/b/2SfJvy/xsjoq
http://paperpile.com/b/2SfJvy/xsjoq
http://paperpile.com/b/2SfJvy/e5F6
http://paperpile.com/b/2SfJvy/e5F6
http://paperpile.com/b/2SfJvy/e5F6
http://paperpile.com/b/2SfJvy/e5F6
http://paperpile.com/b/2SfJvy/e5F6
http://paperpile.com/b/2SfJvy/e5F6
http://paperpile.com/b/2SfJvy/drI2
http://paperpile.com/b/2SfJvy/drI2
http://paperpile.com/b/2SfJvy/drI2
http://paperpile.com/b/2SfJvy/drI2
http://paperpile.com/b/2SfJvy/drI2
http://paperpile.com/b/2SfJvy/drI2
http://paperpile.com/b/2SfJvy/5otLX
http://paperpile.com/b/2SfJvy/5otLX
http://paperpile.com/b/2SfJvy/5otLX
http://paperpile.com/b/2SfJvy/5otLX
http://paperpile.com/b/2SfJvy/YDkmQ

12 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

encryption for arithmetic of approximate numbers,” IACR
Cryptology ePrint Archive, 2016: 421, 2016.

[41] admin, “Intel® Software Guard Extensions Remote Attestation
End-to-End Example | Intel® Software,” Intel, 08-Jul-2016.
[Online]. Available:
https:/ /software.intel.com/en-us/articles/intel-software-guard
-extensions-remote-attestation-end-to-end-example. [Accessed:
30-Jul-2017].

[42] C. Ding, D. Pei, and A. Salomaa, Chinese remainder theorem:
applications in computing, coding, cryptography. World Scientific,
1996.

[43] T. P. Minka, “A comparison of numerical optimizers for logistic
regression,” Oct. 2003.

[44] K. Turkowski, “Computing the inverse square root,” Graphics
Gems V, pp. 16-21, 1995.

[45] K. Laine and R. Player, “Simple Encrypted Arithmetic
Library-SEAL (v2. 0),” Technical report, September, 2016.

[46] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic
evaluation of the AES circuit,” Advances in Cryptology—-CRYPTO
2012, pp. 850-867, 2012.

[47] X. Jiang, M. Osl, J. Kim, and L. Ohno-Machado, “Calibrating
predictive model estimates to support personalized medicine,”
J. Am. Med. Inform. Assoc., vol. 19, no. 2, pp. 263-274, Mar. 2012.

[48] “UCI Machine Learning Repository: Data Sets.” [Online].
Available: https:/ /archive.ics.uci.edu/ml/datasets. [Accessed:
25-Aug-2017].

[49] “UCI Machine Learning Repository: Breast Cancer Wisconsin
(Original) Data Set.” [Online]. Available:
https:/ /archive.ics.uci.edu/ml/datasets /breast+cancer+wiscon
sin+%28original%?29. [Accessed: 25-Aug-2017].

[50] “The MONK'’s Problems: A Performance Comparison of
Different Learning Algorithms.” [Online]. Available:
http:/ /robots.stanford.edu/papers/thrun. MONK.html.
[Accessed: 21-Aug-2017].

[51] Y. Aono, T. Hayashi, L. T. Phong, and L. Wang,
“Privacy-preserving logistic regression with distributed data
sources via homomorphic encryption,” IEICE Trans. Inf. Syst.,
vol. 99, no. 8, pp. 20792089, 2016.

[52] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache
Attacks,” arXiv [cs.CR], 28-Feb-2017.

Yichen Jiang achieved Master degree of Computer Science from
Syracuse University in 2017. Now he is employed by UCSD
department of biomedical informatics, his research focuses on
machine learning and secure computing.

Jenny Hamer is a fourth year undergraduate student in
Mathematics and Computer Science at the University of California,
San Diego (B.S. expected 2018) with Provost Honors. She is a
research assistant and software engineer in the Dept. of Biomedical
Informatics, UCSD, and volunteers with the Voytek Lab, UCSD, in
theoretical and computational cognitive science. Her research
interests include machine and deep learning, cognition and neural
modeling, and bioinformatical analyses.

Chenghong Wang received his bachelor degree in information
security from Harbin Engineering University and master of science
degree in computer science from Syracuse University. His research
interests include graph theory, theoretical machine learning, security
and privacy. He is the student member of ACM and IEEE since
2015.

Xiaoqgian Jiang (S’06-M’10) is an associate professor in the
Department of Biomedical Informatics, UCSD. He received his PhD
in Computer Science from Carnegie Mellon University. He is an
associate editor of BMC Medical Informatics and Decision Making
and serves as an editorial board member of Journal of American
Medical Informatics Association. He works primarily in health data
privacy and predictive models in biomedicine. Dr. Jiang won the

distinguished paper award from AMIA Clinical Research Informatics
(CRI) Summit in 2012 and 2013.

Miran Kim received a Ph.D degree in Mathematical Sciences from
Seoul National University, Seoul, Korea, in 2017. Currently, she is a
postdoctoral researcher in the Department of Biomedical
Informatics, UCSD. Her research interests include cryptography,
computational nhumber theory, genome data privacy, and machine
learning.

Yongsoo Song received a PH.D degree in Mathematical Sciences
from Seoul National University, Seoul, Korea, in 2018. Currently he
is a postdoctoral researcher in the Department of Computer Science
and Engineering, UCSD. His research interests include cryptography
primitives for secure computation and their applications.

Yuhou Xia received her Ph.D. degree in mathematics from
Princeton University in 2018. Her research interests include
algebraic number theory, cryptography, machine learning and data
privacy and security.

Md Nazmus Sadat received his B.Sc. degree in Computer Science
and Engineering from Bangladesh University of Engineering and
Technology (BUET) in 2014. He is currently pursuing M.Sc. in
Computer Science at University of Manitoba. His primary research
interests include trusted hardware assisted secure computation
techniques, privacy-preserving data analytics, and genomic data
privacy.

Noman Mohammed received a Ph.D. degree in Computer Science
from Concordia University in 2012. He is currently an Assistant
Professor in the Department of Computer Science at University of
Manitoba, Manitoba, Canada. Before coming to UofM, he was an
NSERC postdoctoral fellow in the School of Computer Science at
McGill University and a member of the Cryptography, Security, &
Privacy (CrySP) Research Group at the University of Waterloo. His
research interests include private data sharing, privacy-preserving
data mining, secure distributed systems, and applied cryptography.

Shuang Wang (S'08-M’12) received the B.S. degree in applied
physics and the M.S. degree in biomedical engineering from the
Dalian University of Technology, China, and the Ph.D. degree in
electrical and computer engineering from the University of
Oklahoma, OK, USA, in 2012. He was worked as a postdoc
researcher with the Department of Biomedical Informatics (DBMI),
University of California, San Diego (UCSD), CA, USA, 2012 - 2015.
Currently, he is an assistant professor at the DBMI, UCSD. His
research interests include machine learning, and healthcare data
privacy/security. He has published more than 60 journal/conference
papers, 1 book and 2 book chapters. He was awarded a NGHRI
K99/R00 career grant. Dr. Wang is a senior member of |IEEE. Dr.
Wang is a guest editor of Plos Genetics.


http://paperpile.com/b/2SfJvy/YDkmQ
http://paperpile.com/b/2SfJvy/YDkmQ
http://paperpile.com/b/2SfJvy/Osqsg
http://paperpile.com/b/2SfJvy/Osqsg
http://paperpile.com/b/2SfJvy/Osqsg
http://paperpile.com/b/2SfJvy/Osqsg
http://paperpile.com/b/2SfJvy/Osqsg
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
http://paperpile.com/b/2SfJvy/Osqsg
http://paperpile.com/b/2SfJvy/Osqsg
http://paperpile.com/b/2SfJvy/aC93
http://paperpile.com/b/2SfJvy/aC93
http://paperpile.com/b/2SfJvy/aC93
http://paperpile.com/b/2SfJvy/aC93
http://paperpile.com/b/2SfJvy/aC93
http://paperpile.com/b/2SfJvy/Mw0s9
http://paperpile.com/b/2SfJvy/Mw0s9
http://paperpile.com/b/2SfJvy/Ygsi9
http://paperpile.com/b/2SfJvy/Ygsi9
http://paperpile.com/b/2SfJvy/Ygsi9
http://paperpile.com/b/2SfJvy/Ygsi9
http://paperpile.com/b/2SfJvy/ycSL6
http://paperpile.com/b/2SfJvy/ycSL6
http://paperpile.com/b/2SfJvy/GtWu
http://paperpile.com/b/2SfJvy/GtWu
http://paperpile.com/b/2SfJvy/GtWu
http://paperpile.com/b/2SfJvy/GtWu
http://paperpile.com/b/2SfJvy/GtWu
http://paperpile.com/b/2SfJvy/Bk2c
http://paperpile.com/b/2SfJvy/Bk2c
http://paperpile.com/b/2SfJvy/Bk2c
http://paperpile.com/b/2SfJvy/Bk2c
http://paperpile.com/b/2SfJvy/EWsv6
http://paperpile.com/b/2SfJvy/EWsv6
https://archive.ics.uci.edu/ml/datasets
http://paperpile.com/b/2SfJvy/EWsv6
http://paperpile.com/b/2SfJvy/EWsv6
http://paperpile.com/b/2SfJvy/f2cMV
http://paperpile.com/b/2SfJvy/f2cMV
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
http://paperpile.com/b/2SfJvy/f2cMV
http://paperpile.com/b/2SfJvy/jPb1F
http://paperpile.com/b/2SfJvy/jPb1F
http://robots.stanford.edu/papers/thrun.MONK.html
http://paperpile.com/b/2SfJvy/jPb1F
http://paperpile.com/b/2SfJvy/jPb1F
http://paperpile.com/b/2SfJvy/xDEJ
http://paperpile.com/b/2SfJvy/xDEJ
http://paperpile.com/b/2SfJvy/xDEJ
http://paperpile.com/b/2SfJvy/xDEJ
http://paperpile.com/b/2SfJvy/xDEJ
http://paperpile.com/b/2SfJvy/xDEJ
http://paperpile.com/b/2SfJvy/fxz9
http://paperpile.com/b/2SfJvy/fxz9
http://paperpile.com/b/2SfJvy/fxz9
http://paperpile.com/b/2SfJvy/fxz9
http://paperpile.com/b/2SfJvy/fxz9

